Loading…

Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage

Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonic...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2010-06, Vol.256 (17), p.5270-5274
Main Authors: Kuchta, B., Firlej, L., Roszak, Sz, P.Pfeifer, Wexler, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563
cites cdi_FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563
container_end_page 5274
container_issue 17
container_start_page 5270
container_title Applied surface science
container_volume 256
creator Kuchta, B.
Firlej, L.
Roszak, Sz
P.Pfeifer
Wexler, C.
description Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonical Monte Carlo simulations were used to study the mechanism of adsorption in the models of the adsorbate that include both energetic and structural modifications of graphene-based slit pores. In particular, a partial substitution of carbons by boron modifies both the symmetry of the energy landscape and the strength of hydrogen physisorption; which results in considerable increases of the amount of adsorbed gas without major modification of the mechanism of adsorption. Additional heterogeneity arises from structural modifications of the adsorbent by neutron irradiation of boron-doped samples, where the boron fission products generate additional surface area for adsorption. Simulations of adsorption in such pores show that hydrogen uptake is strongly dependent on the chemical nature of the modified pore walls.
doi_str_mv 10.1016/j.apsusc.2009.12.116
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00820789v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433209018388</els_id><sourcerecordid>760208403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJoZu0_6AHX0rJwY6-LEuXQghpE1jIZXsWsjze1aJIW8lO2H9fuQ459jQw88w76BFCXwluCCbi5tiYU56zbSjGqiG0IUR8QBsiO1a3reQXaFMwVXPG6Cd0mfMRY0LLdIN-P4bRzxAsVHGs8pRmO83J-OoAE6S4hwBuOi-zYEI8xRTnXOWYeghT9Wq8z1UM1eE8_GNLQExmD5_Rx9H4DF_e6hXa_bzf3T3U26dfj3e329pyTKdaMCGlIpIKJsdW9Ji3khLSi5H1g5TCMmsUVwozRTqhCDAxyJ72gveKtYJdoes19mC8PiX3bNJZR-P0w-1WLz2MJcWdVC-ksN9X9pTinxnypJ9dtuC9CVDepDuBKZYcs0LylbQp5pxgfI8mWC--9VGvvvXiWxOqi--y9u3tgMnW-DGZYF1-36VU8o4wVbgfKwdFzIuDpLN1ywcMLoGd9BDd_w_9BcbDlx4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760208403</pqid></control><display><type>article</type><title>Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage</title><source>ScienceDirect Journals</source><creator>Kuchta, B. ; Firlej, L. ; Roszak, Sz ; P.Pfeifer ; Wexler, C.</creator><creatorcontrib>Kuchta, B. ; Firlej, L. ; Roszak, Sz ; P.Pfeifer ; Wexler, C.</creatorcontrib><description>Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonical Monte Carlo simulations were used to study the mechanism of adsorption in the models of the adsorbate that include both energetic and structural modifications of graphene-based slit pores. In particular, a partial substitution of carbons by boron modifies both the symmetry of the energy landscape and the strength of hydrogen physisorption; which results in considerable increases of the amount of adsorbed gas without major modification of the mechanism of adsorption. Additional heterogeneity arises from structural modifications of the adsorbent by neutron irradiation of boron-doped samples, where the boron fission products generate additional surface area for adsorption. Simulations of adsorption in such pores show that hydrogen uptake is strongly dependent on the chemical nature of the modified pore walls.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2009.12.116</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Boron ; Carbon ; Computational Physics ; Computer simulation ; Computer simulations ; Condensed Matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Heterogeneity ; Hydrogen ; Hydrogen storage ; Materials Science ; Monte Carlo methods ; Nanostructure ; Physics ; Porosity ; Surface chemistry</subject><ispartof>Applied surface science, 2010-06, Vol.256 (17), p.5270-5274</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563</citedby><cites>FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22847139$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00820789$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuchta, B.</creatorcontrib><creatorcontrib>Firlej, L.</creatorcontrib><creatorcontrib>Roszak, Sz</creatorcontrib><creatorcontrib>P.Pfeifer</creatorcontrib><creatorcontrib>Wexler, C.</creatorcontrib><title>Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage</title><title>Applied surface science</title><description>Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonical Monte Carlo simulations were used to study the mechanism of adsorption in the models of the adsorbate that include both energetic and structural modifications of graphene-based slit pores. In particular, a partial substitution of carbons by boron modifies both the symmetry of the energy landscape and the strength of hydrogen physisorption; which results in considerable increases of the amount of adsorbed gas without major modification of the mechanism of adsorption. Additional heterogeneity arises from structural modifications of the adsorbent by neutron irradiation of boron-doped samples, where the boron fission products generate additional surface area for adsorption. Simulations of adsorption in such pores show that hydrogen uptake is strongly dependent on the chemical nature of the modified pore walls.</description><subject>Adsorption</subject><subject>Boron</subject><subject>Carbon</subject><subject>Computational Physics</subject><subject>Computer simulation</subject><subject>Computer simulations</subject><subject>Condensed Matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Heterogeneity</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Materials Science</subject><subject>Monte Carlo methods</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Porosity</subject><subject>Surface chemistry</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJoZu0_6AHX0rJwY6-LEuXQghpE1jIZXsWsjze1aJIW8lO2H9fuQ459jQw88w76BFCXwluCCbi5tiYU56zbSjGqiG0IUR8QBsiO1a3reQXaFMwVXPG6Cd0mfMRY0LLdIN-P4bRzxAsVHGs8pRmO83J-OoAE6S4hwBuOi-zYEI8xRTnXOWYeghT9Wq8z1UM1eE8_GNLQExmD5_Rx9H4DF_e6hXa_bzf3T3U26dfj3e329pyTKdaMCGlIpIKJsdW9Ji3khLSi5H1g5TCMmsUVwozRTqhCDAxyJ72gveKtYJdoes19mC8PiX3bNJZR-P0w-1WLz2MJcWdVC-ksN9X9pTinxnypJ9dtuC9CVDepDuBKZYcs0LylbQp5pxgfI8mWC--9VGvvvXiWxOqi--y9u3tgMnW-DGZYF1-36VU8o4wVbgfKwdFzIuDpLN1ywcMLoGd9BDd_w_9BcbDlx4</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Kuchta, B.</creator><creator>Firlej, L.</creator><creator>Roszak, Sz</creator><creator>P.Pfeifer</creator><creator>Wexler, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20100615</creationdate><title>Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage</title><author>Kuchta, B. ; Firlej, L. ; Roszak, Sz ; P.Pfeifer ; Wexler, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Boron</topic><topic>Carbon</topic><topic>Computational Physics</topic><topic>Computer simulation</topic><topic>Computer simulations</topic><topic>Condensed Matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Heterogeneity</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Materials Science</topic><topic>Monte Carlo methods</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Porosity</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuchta, B.</creatorcontrib><creatorcontrib>Firlej, L.</creatorcontrib><creatorcontrib>Roszak, Sz</creatorcontrib><creatorcontrib>P.Pfeifer</creatorcontrib><creatorcontrib>Wexler, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuchta, B.</au><au>Firlej, L.</au><au>Roszak, Sz</au><au>P.Pfeifer</au><au>Wexler, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage</atitle><jtitle>Applied surface science</jtitle><date>2010-06-15</date><risdate>2010</risdate><volume>256</volume><issue>17</issue><spage>5270</spage><epage>5274</epage><pages>5270-5274</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonical Monte Carlo simulations were used to study the mechanism of adsorption in the models of the adsorbate that include both energetic and structural modifications of graphene-based slit pores. In particular, a partial substitution of carbons by boron modifies both the symmetry of the energy landscape and the strength of hydrogen physisorption; which results in considerable increases of the amount of adsorbed gas without major modification of the mechanism of adsorption. Additional heterogeneity arises from structural modifications of the adsorbent by neutron irradiation of boron-doped samples, where the boron fission products generate additional surface area for adsorption. Simulations of adsorption in such pores show that hydrogen uptake is strongly dependent on the chemical nature of the modified pore walls.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2009.12.116</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2010-06, Vol.256 (17), p.5270-5274
issn 0169-4332
1873-5584
language eng
recordid cdi_hal_primary_oai_HAL_hal_00820789v1
source ScienceDirect Journals
subjects Adsorption
Boron
Carbon
Computational Physics
Computer simulation
Computer simulations
Condensed Matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Heterogeneity
Hydrogen
Hydrogen storage
Materials Science
Monte Carlo methods
Nanostructure
Physics
Porosity
Surface chemistry
title Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20structural%20heterogeneity%20of%20nanoporous%20sorbent%20walls%20on%20hydrogen%20storage&rft.jtitle=Applied%20surface%20science&rft.au=Kuchta,%20B.&rft.date=2010-06-15&rft.volume=256&rft.issue=17&rft.spage=5270&rft.epage=5274&rft.pages=5270-5274&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2009.12.116&rft_dat=%3Cproquest_hal_p%3E760208403%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=760208403&rft_id=info:pmid/&rfr_iscdi=true