Loading…
Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage
Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonic...
Saved in:
Published in: | Applied surface science 2010-06, Vol.256 (17), p.5270-5274 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563 |
container_end_page | 5274 |
container_issue | 17 |
container_start_page | 5270 |
container_title | Applied surface science |
container_volume | 256 |
creator | Kuchta, B. Firlej, L. Roszak, Sz P.Pfeifer Wexler, C. |
description | Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonical Monte Carlo simulations were used to study the mechanism of adsorption in the models of the adsorbate that include both energetic and structural modifications of graphene-based slit pores. In particular, a partial substitution of carbons by boron modifies both the symmetry of the energy landscape and the strength of hydrogen physisorption; which results in considerable increases of the amount of adsorbed gas without major modification of the mechanism of adsorption. Additional heterogeneity arises from structural modifications of the adsorbent by neutron irradiation of boron-doped samples, where the boron fission products generate additional surface area for adsorption. Simulations of adsorption in such pores show that hydrogen uptake is strongly dependent on the chemical nature of the modified pore walls. |
doi_str_mv | 10.1016/j.apsusc.2009.12.116 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00820789v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433209018388</els_id><sourcerecordid>760208403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJoZu0_6AHX0rJwY6-LEuXQghpE1jIZXsWsjze1aJIW8lO2H9fuQ459jQw88w76BFCXwluCCbi5tiYU56zbSjGqiG0IUR8QBsiO1a3reQXaFMwVXPG6Cd0mfMRY0LLdIN-P4bRzxAsVHGs8pRmO83J-OoAE6S4hwBuOi-zYEI8xRTnXOWYeghT9Wq8z1UM1eE8_GNLQExmD5_Rx9H4DF_e6hXa_bzf3T3U26dfj3e329pyTKdaMCGlIpIKJsdW9Ji3khLSi5H1g5TCMmsUVwozRTqhCDAxyJ72gveKtYJdoes19mC8PiX3bNJZR-P0w-1WLz2MJcWdVC-ksN9X9pTinxnypJ9dtuC9CVDepDuBKZYcs0LylbQp5pxgfI8mWC--9VGvvvXiWxOqi--y9u3tgMnW-DGZYF1-36VU8o4wVbgfKwdFzIuDpLN1ywcMLoGd9BDd_w_9BcbDlx4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760208403</pqid></control><display><type>article</type><title>Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage</title><source>ScienceDirect Journals</source><creator>Kuchta, B. ; Firlej, L. ; Roszak, Sz ; P.Pfeifer ; Wexler, C.</creator><creatorcontrib>Kuchta, B. ; Firlej, L. ; Roszak, Sz ; P.Pfeifer ; Wexler, C.</creatorcontrib><description>Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonical Monte Carlo simulations were used to study the mechanism of adsorption in the models of the adsorbate that include both energetic and structural modifications of graphene-based slit pores. In particular, a partial substitution of carbons by boron modifies both the symmetry of the energy landscape and the strength of hydrogen physisorption; which results in considerable increases of the amount of adsorbed gas without major modification of the mechanism of adsorption. Additional heterogeneity arises from structural modifications of the adsorbent by neutron irradiation of boron-doped samples, where the boron fission products generate additional surface area for adsorption. Simulations of adsorption in such pores show that hydrogen uptake is strongly dependent on the chemical nature of the modified pore walls.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2009.12.116</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Boron ; Carbon ; Computational Physics ; Computer simulation ; Computer simulations ; Condensed Matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Heterogeneity ; Hydrogen ; Hydrogen storage ; Materials Science ; Monte Carlo methods ; Nanostructure ; Physics ; Porosity ; Surface chemistry</subject><ispartof>Applied surface science, 2010-06, Vol.256 (17), p.5270-5274</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563</citedby><cites>FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22847139$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00820789$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuchta, B.</creatorcontrib><creatorcontrib>Firlej, L.</creatorcontrib><creatorcontrib>Roszak, Sz</creatorcontrib><creatorcontrib>P.Pfeifer</creatorcontrib><creatorcontrib>Wexler, C.</creatorcontrib><title>Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage</title><title>Applied surface science</title><description>Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonical Monte Carlo simulations were used to study the mechanism of adsorption in the models of the adsorbate that include both energetic and structural modifications of graphene-based slit pores. In particular, a partial substitution of carbons by boron modifies both the symmetry of the energy landscape and the strength of hydrogen physisorption; which results in considerable increases of the amount of adsorbed gas without major modification of the mechanism of adsorption. Additional heterogeneity arises from structural modifications of the adsorbent by neutron irradiation of boron-doped samples, where the boron fission products generate additional surface area for adsorption. Simulations of adsorption in such pores show that hydrogen uptake is strongly dependent on the chemical nature of the modified pore walls.</description><subject>Adsorption</subject><subject>Boron</subject><subject>Carbon</subject><subject>Computational Physics</subject><subject>Computer simulation</subject><subject>Computer simulations</subject><subject>Condensed Matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Heterogeneity</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Materials Science</subject><subject>Monte Carlo methods</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Porosity</subject><subject>Surface chemistry</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJoZu0_6AHX0rJwY6-LEuXQghpE1jIZXsWsjze1aJIW8lO2H9fuQ459jQw88w76BFCXwluCCbi5tiYU56zbSjGqiG0IUR8QBsiO1a3reQXaFMwVXPG6Cd0mfMRY0LLdIN-P4bRzxAsVHGs8pRmO83J-OoAE6S4hwBuOi-zYEI8xRTnXOWYeghT9Wq8z1UM1eE8_GNLQExmD5_Rx9H4DF_e6hXa_bzf3T3U26dfj3e329pyTKdaMCGlIpIKJsdW9Ji3khLSi5H1g5TCMmsUVwozRTqhCDAxyJ72gveKtYJdoes19mC8PiX3bNJZR-P0w-1WLz2MJcWdVC-ksN9X9pTinxnypJ9dtuC9CVDepDuBKZYcs0LylbQp5pxgfI8mWC--9VGvvvXiWxOqi--y9u3tgMnW-DGZYF1-36VU8o4wVbgfKwdFzIuDpLN1ywcMLoGd9BDd_w_9BcbDlx4</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Kuchta, B.</creator><creator>Firlej, L.</creator><creator>Roszak, Sz</creator><creator>P.Pfeifer</creator><creator>Wexler, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20100615</creationdate><title>Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage</title><author>Kuchta, B. ; Firlej, L. ; Roszak, Sz ; P.Pfeifer ; Wexler, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Boron</topic><topic>Carbon</topic><topic>Computational Physics</topic><topic>Computer simulation</topic><topic>Computer simulations</topic><topic>Condensed Matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Heterogeneity</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Materials Science</topic><topic>Monte Carlo methods</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Porosity</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuchta, B.</creatorcontrib><creatorcontrib>Firlej, L.</creatorcontrib><creatorcontrib>Roszak, Sz</creatorcontrib><creatorcontrib>P.Pfeifer</creatorcontrib><creatorcontrib>Wexler, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuchta, B.</au><au>Firlej, L.</au><au>Roszak, Sz</au><au>P.Pfeifer</au><au>Wexler, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage</atitle><jtitle>Applied surface science</jtitle><date>2010-06-15</date><risdate>2010</risdate><volume>256</volume><issue>17</issue><spage>5270</spage><epage>5274</epage><pages>5270-5274</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Heterogeneity is an ubiquitous aspect of adsorption, often modifying substantially the observed behaviour of the adsorbate–adsorbent system. In this paper, the influence of heterogeneity is explicitly analyzed for the case of the adsorption of molecular hydrogen onto nanoporous carbon. Grand Canonical Monte Carlo simulations were used to study the mechanism of adsorption in the models of the adsorbate that include both energetic and structural modifications of graphene-based slit pores. In particular, a partial substitution of carbons by boron modifies both the symmetry of the energy landscape and the strength of hydrogen physisorption; which results in considerable increases of the amount of adsorbed gas without major modification of the mechanism of adsorption. Additional heterogeneity arises from structural modifications of the adsorbent by neutron irradiation of boron-doped samples, where the boron fission products generate additional surface area for adsorption. Simulations of adsorption in such pores show that hydrogen uptake is strongly dependent on the chemical nature of the modified pore walls.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2009.12.116</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2010-06, Vol.256 (17), p.5270-5274 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00820789v1 |
source | ScienceDirect Journals |
subjects | Adsorption Boron Carbon Computational Physics Computer simulation Computer simulations Condensed Matter Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Heterogeneity Hydrogen Hydrogen storage Materials Science Monte Carlo methods Nanostructure Physics Porosity Surface chemistry |
title | Influence of structural heterogeneity of nanoporous sorbent walls on hydrogen storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20structural%20heterogeneity%20of%20nanoporous%20sorbent%20walls%20on%20hydrogen%20storage&rft.jtitle=Applied%20surface%20science&rft.au=Kuchta,%20B.&rft.date=2010-06-15&rft.volume=256&rft.issue=17&rft.spage=5270&rft.epage=5274&rft.pages=5270-5274&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2009.12.116&rft_dat=%3Cproquest_hal_p%3E760208403%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-636889182638f56b0458211b6f3bd886c3ca949903917691e36d8b2b64b93563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=760208403&rft_id=info:pmid/&rfr_iscdi=true |