Loading…
An inexact bundle variant suited to column generation
We give a bundle method for constrained convex optimization. Instead of using penalty functions, it shifts iterates towards feasibility, by way of a Slater point, assumed to be known. Besides, the method accepts an oracle delivering function and subgradient values with unknown accuracy. Our approach...
Saved in:
Published in: | Mathematical programming 2009-04, Vol.118 (1), p.177-206 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give a bundle method for constrained convex optimization. Instead of using penalty functions, it shifts iterates towards feasibility, by way of a Slater point, assumed to be known. Besides, the method accepts an oracle delivering function and subgradient values with unknown accuracy. Our approach is motivated by a number of applications in column generation, in which constraints are positively homogeneous—so that zero is a natural Slater point—and an exact oracle may be time consuming. Finally, our convergence analysis employs arguments which have been little used so far in the bundle community. The method is illustrated on a number of cutting-stock problems. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-007-0187-4 |