Loading…
Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions
We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ S n and...
Saved in:
Published in: | Discrete mathematics 2010-12, Vol.310 (24), p.3584-3606 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783 |
container_end_page | 3606 |
container_issue | 24 |
container_start_page | 3584 |
container_title | Discrete mathematics |
container_volume | 310 |
creator | Novelli, Jean-Christophe Thibon, Jean-Yves |
description | We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products
Γ
≀
S
n
and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type
B
. |
doi_str_mv | 10.1016/j.disc.2010.09.008 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00823052v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X10003511</els_id><sourcerecordid>S0012365X10003511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFMuHgS35qPdzYIXEb-g4EXBW5hNJjZlP2qSrfjv3bXiSTwNMzzPDPMScsrZjDOeX65n1kczE2wYsHLGmNojE64KkeWKv-6TCWNcZDJfvB6SoxjXbOhzqSakvwuI9L2H6LP42TSYgjfU9a1JvmsjhdZSi9FgmyjUb1gFiNR1gX4EhLSim9DZ3qR48U22XWu6pukTJL9F2vR1-nPtMTlwUEc8-alT8nJ3-3zzkC2f7h9vrpeZmTOVMs5EuQBXCgYcXYllMXfzheVFAXnBK-nyfHxDFso6Dqoq5BzLyjqsuGJ5oeSUnO_2rqDWm-AbCJ-6A68frpd6nA1BCckWYssHVuxYE7oYA7pfgTM9hqzXegxZjyFrVo7uIJ3tpA1EA7UL0Boff00hpZJCyYG72nE4fLv1GHQ0HluD1gc0SdvO_3fmC-t2lJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Novelli, Jean-Christophe ; Thibon, Jean-Yves</creator><creatorcontrib>Novelli, Jean-Christophe ; Thibon, Jean-Yves</creatorcontrib><description>We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products
Γ
≀
S
n
and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type
B
.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.09.008</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algebra ; Algebraic combinatorics ; Associative rings and algebras ; Combinatorial Hopf algebras ; Combinatorics ; Combinatorics. Ordered structures ; Descent algebras ; Exact sciences and technology ; Functional analysis ; Manifolds and cell complexes ; Mathematical analysis ; Mathematics ; Noncommutative symmetric functions ; Quasi-symmetric functions ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Discrete mathematics, 2010-12, Vol.310 (24), p.3584-3606</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783</citedby><cites>FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783</cites><orcidid>0000-0002-8976-4044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23383283$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00823052$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Novelli, Jean-Christophe</creatorcontrib><creatorcontrib>Thibon, Jean-Yves</creatorcontrib><title>Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</title><title>Discrete mathematics</title><description>We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products
Γ
≀
S
n
and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type
B
.</description><subject>Algebra</subject><subject>Algebraic combinatorics</subject><subject>Associative rings and algebras</subject><subject>Combinatorial Hopf algebras</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Descent algebras</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Manifolds and cell complexes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Noncommutative symmetric functions</subject><subject>Quasi-symmetric functions</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFMuHgS35qPdzYIXEb-g4EXBW5hNJjZlP2qSrfjv3bXiSTwNMzzPDPMScsrZjDOeX65n1kczE2wYsHLGmNojE64KkeWKv-6TCWNcZDJfvB6SoxjXbOhzqSakvwuI9L2H6LP42TSYgjfU9a1JvmsjhdZSi9FgmyjUb1gFiNR1gX4EhLSim9DZ3qR48U22XWu6pukTJL9F2vR1-nPtMTlwUEc8-alT8nJ3-3zzkC2f7h9vrpeZmTOVMs5EuQBXCgYcXYllMXfzheVFAXnBK-nyfHxDFso6Dqoq5BzLyjqsuGJ5oeSUnO_2rqDWm-AbCJ-6A68frpd6nA1BCckWYssHVuxYE7oYA7pfgTM9hqzXegxZjyFrVo7uIJ3tpA1EA7UL0Boff00hpZJCyYG72nE4fLv1GHQ0HluD1gc0SdvO_3fmC-t2lJ4</recordid><startdate>20101228</startdate><enddate>20101228</enddate><creator>Novelli, Jean-Christophe</creator><creator>Thibon, Jean-Yves</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8976-4044</orcidid></search><sort><creationdate>20101228</creationdate><title>Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</title><author>Novelli, Jean-Christophe ; Thibon, Jean-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algebraic combinatorics</topic><topic>Associative rings and algebras</topic><topic>Combinatorial Hopf algebras</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Descent algebras</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Manifolds and cell complexes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Noncommutative symmetric functions</topic><topic>Quasi-symmetric functions</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novelli, Jean-Christophe</creatorcontrib><creatorcontrib>Thibon, Jean-Yves</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novelli, Jean-Christophe</au><au>Thibon, Jean-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</atitle><jtitle>Discrete mathematics</jtitle><date>2010-12-28</date><risdate>2010</risdate><volume>310</volume><issue>24</issue><spage>3584</spage><epage>3606</epage><pages>3584-3606</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products
Γ
≀
S
n
and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type
B
.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2010.09.008</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8976-4044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2010-12, Vol.310 (24), p.3584-3606 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00823052v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algebra Algebraic combinatorics Associative rings and algebras Combinatorial Hopf algebras Combinatorics Combinatorics. Ordered structures Descent algebras Exact sciences and technology Functional analysis Manifolds and cell complexes Mathematical analysis Mathematics Noncommutative symmetric functions Quasi-symmetric functions Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20quasi-symmetric%20functions%20and%20descent%20algebras%20for%20wreath%20products,%20and%20noncommutative%20multi-symmetric%20functions&rft.jtitle=Discrete%20mathematics&rft.au=Novelli,%20Jean-Christophe&rft.date=2010-12-28&rft.volume=310&rft.issue=24&rft.spage=3584&rft.epage=3606&rft.pages=3584-3606&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2010.09.008&rft_dat=%3Celsevier_hal_p%3ES0012365X10003511%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |