Loading…

Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions

We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ S n and...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics 2010-12, Vol.310 (24), p.3584-3606
Main Authors: Novelli, Jean-Christophe, Thibon, Jean-Yves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783
cites cdi_FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783
container_end_page 3606
container_issue 24
container_start_page 3584
container_title Discrete mathematics
container_volume 310
creator Novelli, Jean-Christophe
Thibon, Jean-Yves
description We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ S n and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type B .
doi_str_mv 10.1016/j.disc.2010.09.008
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00823052v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X10003511</els_id><sourcerecordid>S0012365X10003511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFMuHgS35qPdzYIXEb-g4EXBW5hNJjZlP2qSrfjv3bXiSTwNMzzPDPMScsrZjDOeX65n1kczE2wYsHLGmNojE64KkeWKv-6TCWNcZDJfvB6SoxjXbOhzqSakvwuI9L2H6LP42TSYgjfU9a1JvmsjhdZSi9FgmyjUb1gFiNR1gX4EhLSim9DZ3qR48U22XWu6pukTJL9F2vR1-nPtMTlwUEc8-alT8nJ3-3zzkC2f7h9vrpeZmTOVMs5EuQBXCgYcXYllMXfzheVFAXnBK-nyfHxDFso6Dqoq5BzLyjqsuGJ5oeSUnO_2rqDWm-AbCJ-6A68frpd6nA1BCckWYssHVuxYE7oYA7pfgTM9hqzXegxZjyFrVo7uIJ3tpA1EA7UL0Boff00hpZJCyYG72nE4fLv1GHQ0HluD1gc0SdvO_3fmC-t2lJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Novelli, Jean-Christophe ; Thibon, Jean-Yves</creator><creatorcontrib>Novelli, Jean-Christophe ; Thibon, Jean-Yves</creatorcontrib><description>We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ S n and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type B .</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.09.008</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algebra ; Algebraic combinatorics ; Associative rings and algebras ; Combinatorial Hopf algebras ; Combinatorics ; Combinatorics. Ordered structures ; Descent algebras ; Exact sciences and technology ; Functional analysis ; Manifolds and cell complexes ; Mathematical analysis ; Mathematics ; Noncommutative symmetric functions ; Quasi-symmetric functions ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Discrete mathematics, 2010-12, Vol.310 (24), p.3584-3606</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783</citedby><cites>FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783</cites><orcidid>0000-0002-8976-4044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23383283$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00823052$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Novelli, Jean-Christophe</creatorcontrib><creatorcontrib>Thibon, Jean-Yves</creatorcontrib><title>Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</title><title>Discrete mathematics</title><description>We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ S n and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type B .</description><subject>Algebra</subject><subject>Algebraic combinatorics</subject><subject>Associative rings and algebras</subject><subject>Combinatorial Hopf algebras</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Descent algebras</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Manifolds and cell complexes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Noncommutative symmetric functions</subject><subject>Quasi-symmetric functions</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFMuHgS35qPdzYIXEb-g4EXBW5hNJjZlP2qSrfjv3bXiSTwNMzzPDPMScsrZjDOeX65n1kczE2wYsHLGmNojE64KkeWKv-6TCWNcZDJfvB6SoxjXbOhzqSakvwuI9L2H6LP42TSYgjfU9a1JvmsjhdZSi9FgmyjUb1gFiNR1gX4EhLSim9DZ3qR48U22XWu6pukTJL9F2vR1-nPtMTlwUEc8-alT8nJ3-3zzkC2f7h9vrpeZmTOVMs5EuQBXCgYcXYllMXfzheVFAXnBK-nyfHxDFso6Dqoq5BzLyjqsuGJ5oeSUnO_2rqDWm-AbCJ-6A68frpd6nA1BCckWYssHVuxYE7oYA7pfgTM9hqzXegxZjyFrVo7uIJ3tpA1EA7UL0Boff00hpZJCyYG72nE4fLv1GHQ0HluD1gc0SdvO_3fmC-t2lJ4</recordid><startdate>20101228</startdate><enddate>20101228</enddate><creator>Novelli, Jean-Christophe</creator><creator>Thibon, Jean-Yves</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8976-4044</orcidid></search><sort><creationdate>20101228</creationdate><title>Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</title><author>Novelli, Jean-Christophe ; Thibon, Jean-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algebraic combinatorics</topic><topic>Associative rings and algebras</topic><topic>Combinatorial Hopf algebras</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Descent algebras</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Manifolds and cell complexes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Noncommutative symmetric functions</topic><topic>Quasi-symmetric functions</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novelli, Jean-Christophe</creatorcontrib><creatorcontrib>Thibon, Jean-Yves</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novelli, Jean-Christophe</au><au>Thibon, Jean-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</atitle><jtitle>Discrete mathematics</jtitle><date>2010-12-28</date><risdate>2010</risdate><volume>310</volume><issue>24</issue><spage>3584</spage><epage>3606</epage><pages>3584-3606</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ S n and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type B .</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2010.09.008</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8976-4044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2010-12, Vol.310 (24), p.3584-3606
issn 0012-365X
1872-681X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00823052v1
source ScienceDirect Freedom Collection 2022-2024
subjects Algebra
Algebraic combinatorics
Associative rings and algebras
Combinatorial Hopf algebras
Combinatorics
Combinatorics. Ordered structures
Descent algebras
Exact sciences and technology
Functional analysis
Manifolds and cell complexes
Mathematical analysis
Mathematics
Noncommutative symmetric functions
Quasi-symmetric functions
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20quasi-symmetric%20functions%20and%20descent%20algebras%20for%20wreath%20products,%20and%20noncommutative%20multi-symmetric%20functions&rft.jtitle=Discrete%20mathematics&rft.au=Novelli,%20Jean-Christophe&rft.date=2010-12-28&rft.volume=310&rft.issue=24&rft.spage=3584&rft.epage=3606&rft.pages=3584-3606&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2010.09.008&rft_dat=%3Celsevier_hal_p%3ES0012365X10003511%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-10295af920a1ef9e974f45d177a671b3f660163378df1a8b734e9bdfeb1806783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true