Loading…

Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action

For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding i...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2013-04, Vol.4 (1), p.1803-1803, Article 1803
Main Authors: Etaki, S., Konschelle, F., Blanter, Ya. M., Yamaguchi, H., van der Zant, H. S. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23
cites cdi_FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23
container_end_page 1803
container_issue 1
container_start_page 1803
container_title Nature communications
container_volume 4
creator Etaki, S.
Konschelle, F.
Blanter, Ya. M.
Yamaguchi, H.
van der Zant, H. S. J.
description For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding instability can create self-sustained oscillators in the resonator. Here we demonstrate that a torsional mechanical resonator, which contains a direct current SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action can be so large that, in combination with complex nonlinear Josephson dynamics, it generates intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation amplitude is exploited to calibrate the displacement resolution, which is shown to be below the standard quantum limit. The suspended torsional SQUID provides an interesting platform to study on-chip laser-like physics in an electromechanical system that can be controlled by both a flux and current bias. If the measurement sensitivity reaches the quantum limit during ultra-sensitive measurements, nanomechanical resonators interact with the detectors. Here the authors exploit this back-action to create and tune self-sustained electromechanical oscillations in a SQUID measurement system.
doi_str_mv 10.1038/ncomms2827
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00832775v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349705051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23</originalsourceid><addsrcrecordid>eNplkdtKAzEQhoMoKtUbH0AC3nhgNcduclnqqVAQUa9DNk106-5Gk12hPr0pW7VobiYz-eZPJj8ABxidY0TFRWN8XUciSL4BdgliOMM5oZtr-x2wH-McpUUlFoxtgx1Ch5wSzHeBerCVy2IXW102dgZ9NGVV6bb0TYTeQQ1bH2LKdAUf7p8mlzDYmLJUhWUz60zqKRZw6oNt2s_M-WAsLLR5zbRZiuyBLaeraPdXcQCerq8ex7fZ9O5mMh5NM8NE3ma8oIWUhkg-I1hrVjDpGMu5IJhhxMQQUaOHhgiKCySdYZQLh4jMpcMFcYQOwEmv-6Ir9RbKWoeF8rpUt6OpWtYQEpTkOf_AiT3u2bfg3zsbW1WX0dg0dmN9FxWmTOaII75Ej_6gc9-F9Bk9JSgbUpGo054ywccYrPt5AUZq6ZL6dSnBhyvJrqjt7Af99iQBZz0Q01HzbMPanf_lvgCZy5o2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349834638</pqid></control><display><type>article</type><title>Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Etaki, S. ; Konschelle, F. ; Blanter, Ya. M. ; Yamaguchi, H. ; van der Zant, H. S. J.</creator><creatorcontrib>Etaki, S. ; Konschelle, F. ; Blanter, Ya. M. ; Yamaguchi, H. ; van der Zant, H. S. J.</creatorcontrib><description>For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding instability can create self-sustained oscillators in the resonator. Here we demonstrate that a torsional mechanical resonator, which contains a direct current SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action can be so large that, in combination with complex nonlinear Josephson dynamics, it generates intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation amplitude is exploited to calibrate the displacement resolution, which is shown to be below the standard quantum limit. The suspended torsional SQUID provides an interesting platform to study on-chip laser-like physics in an electromechanical system that can be controlled by both a flux and current bias. If the measurement sensitivity reaches the quantum limit during ultra-sensitive measurements, nanomechanical resonators interact with the detectors. Here the authors exploit this back-action to create and tune self-sustained electromechanical oscillations in a SQUID measurement system.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2827</identifier><identifier>PMID: 23653215</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/925/927/359 ; Condensed Matter ; Humanities and Social Sciences ; Mesoscopic Systems and Quantum Hall Effect ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary) ; Superconductivity</subject><ispartof>Nature communications, 2013-04, Vol.4 (1), p.1803-1803, Article 1803</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Apr 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23</citedby><cites>FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23</cites><orcidid>0000-0002-8193-2832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1349834638/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1349834638?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23653215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00832775$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Etaki, S.</creatorcontrib><creatorcontrib>Konschelle, F.</creatorcontrib><creatorcontrib>Blanter, Ya. M.</creatorcontrib><creatorcontrib>Yamaguchi, H.</creatorcontrib><creatorcontrib>van der Zant, H. S. J.</creatorcontrib><title>Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding instability can create self-sustained oscillators in the resonator. Here we demonstrate that a torsional mechanical resonator, which contains a direct current SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action can be so large that, in combination with complex nonlinear Josephson dynamics, it generates intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation amplitude is exploited to calibrate the displacement resolution, which is shown to be below the standard quantum limit. The suspended torsional SQUID provides an interesting platform to study on-chip laser-like physics in an electromechanical system that can be controlled by both a flux and current bias. If the measurement sensitivity reaches the quantum limit during ultra-sensitive measurements, nanomechanical resonators interact with the detectors. Here the authors exploit this back-action to create and tune self-sustained electromechanical oscillations in a SQUID measurement system.</description><subject>639/766/119</subject><subject>639/925/927/359</subject><subject>Condensed Matter</subject><subject>Humanities and Social Sciences</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductivity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkdtKAzEQhoMoKtUbH0AC3nhgNcduclnqqVAQUa9DNk106-5Gk12hPr0pW7VobiYz-eZPJj8ABxidY0TFRWN8XUciSL4BdgliOMM5oZtr-x2wH-McpUUlFoxtgx1Ch5wSzHeBerCVy2IXW102dgZ9NGVV6bb0TYTeQQ1bH2LKdAUf7p8mlzDYmLJUhWUz60zqKRZw6oNt2s_M-WAsLLR5zbRZiuyBLaeraPdXcQCerq8ex7fZ9O5mMh5NM8NE3ma8oIWUhkg-I1hrVjDpGMu5IJhhxMQQUaOHhgiKCySdYZQLh4jMpcMFcYQOwEmv-6Ir9RbKWoeF8rpUt6OpWtYQEpTkOf_AiT3u2bfg3zsbW1WX0dg0dmN9FxWmTOaII75Ej_6gc9-F9Bk9JSgbUpGo054ywccYrPt5AUZq6ZL6dSnBhyvJrqjt7Af99iQBZz0Q01HzbMPanf_lvgCZy5o2</recordid><startdate>20130430</startdate><enddate>20130430</enddate><creator>Etaki, S.</creator><creator>Konschelle, F.</creator><creator>Blanter, Ya. M.</creator><creator>Yamaguchi, H.</creator><creator>van der Zant, H. S. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8193-2832</orcidid></search><sort><creationdate>20130430</creationdate><title>Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action</title><author>Etaki, S. ; Konschelle, F. ; Blanter, Ya. M. ; Yamaguchi, H. ; van der Zant, H. S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/119</topic><topic>639/925/927/359</topic><topic>Condensed Matter</topic><topic>Humanities and Social Sciences</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etaki, S.</creatorcontrib><creatorcontrib>Konschelle, F.</creatorcontrib><creatorcontrib>Blanter, Ya. M.</creatorcontrib><creatorcontrib>Yamaguchi, H.</creatorcontrib><creatorcontrib>van der Zant, H. S. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etaki, S.</au><au>Konschelle, F.</au><au>Blanter, Ya. M.</au><au>Yamaguchi, H.</au><au>van der Zant, H. S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-04-30</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1803</spage><epage>1803</epage><pages>1803-1803</pages><artnum>1803</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding instability can create self-sustained oscillators in the resonator. Here we demonstrate that a torsional mechanical resonator, which contains a direct current SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action can be so large that, in combination with complex nonlinear Josephson dynamics, it generates intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation amplitude is exploited to calibrate the displacement resolution, which is shown to be below the standard quantum limit. The suspended torsional SQUID provides an interesting platform to study on-chip laser-like physics in an electromechanical system that can be controlled by both a flux and current bias. If the measurement sensitivity reaches the quantum limit during ultra-sensitive measurements, nanomechanical resonators interact with the detectors. Here the authors exploit this back-action to create and tune self-sustained electromechanical oscillations in a SQUID measurement system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23653215</pmid><doi>10.1038/ncomms2827</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8193-2832</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2013-04, Vol.4 (1), p.1803-1803, Article 1803
issn 2041-1723
2041-1723
language eng
recordid cdi_hal_primary_oai_HAL_hal_00832775v1
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/119
639/925/927/359
Condensed Matter
Humanities and Social Sciences
Mesoscopic Systems and Quantum Hall Effect
multidisciplinary
Physics
Science
Science (multidisciplinary)
Superconductivity
title Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-sustained%20oscillations%20of%20a%20torsional%20SQUID%20resonator%20induced%20by%20Lorentz-force%20back-action&rft.jtitle=Nature%20communications&rft.au=Etaki,%20S.&rft.date=2013-04-30&rft.volume=4&rft.issue=1&rft.spage=1803&rft.epage=1803&rft.pages=1803-1803&rft.artnum=1803&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2827&rft_dat=%3Cproquest_hal_p%3E1349705051%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349834638&rft_id=info:pmid/23653215&rfr_iscdi=true