Loading…
Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action
For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding i...
Saved in:
Published in: | Nature communications 2013-04, Vol.4 (1), p.1803-1803, Article 1803 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23 |
container_end_page | 1803 |
container_issue | 1 |
container_start_page | 1803 |
container_title | Nature communications |
container_volume | 4 |
creator | Etaki, S. Konschelle, F. Blanter, Ya. M. Yamaguchi, H. van der Zant, H. S. J. |
description | For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding instability can create self-sustained oscillators in the resonator. Here we demonstrate that a torsional mechanical resonator, which contains a direct current SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action can be so large that, in combination with complex nonlinear Josephson dynamics, it generates intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation amplitude is exploited to calibrate the displacement resolution, which is shown to be below the standard quantum limit. The suspended torsional SQUID provides an interesting platform to study on-chip laser-like physics in an electromechanical system that can be controlled by both a flux and current bias.
If the measurement sensitivity reaches the quantum limit during ultra-sensitive measurements, nanomechanical resonators interact with the detectors. Here the authors exploit this back-action to create and tune self-sustained electromechanical oscillations in a SQUID measurement system. |
doi_str_mv | 10.1038/ncomms2827 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00832775v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349705051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23</originalsourceid><addsrcrecordid>eNplkdtKAzEQhoMoKtUbH0AC3nhgNcduclnqqVAQUa9DNk106-5Gk12hPr0pW7VobiYz-eZPJj8ABxidY0TFRWN8XUciSL4BdgliOMM5oZtr-x2wH-McpUUlFoxtgx1Ch5wSzHeBerCVy2IXW102dgZ9NGVV6bb0TYTeQQ1bH2LKdAUf7p8mlzDYmLJUhWUz60zqKRZw6oNt2s_M-WAsLLR5zbRZiuyBLaeraPdXcQCerq8ex7fZ9O5mMh5NM8NE3ma8oIWUhkg-I1hrVjDpGMu5IJhhxMQQUaOHhgiKCySdYZQLh4jMpcMFcYQOwEmv-6Ir9RbKWoeF8rpUt6OpWtYQEpTkOf_AiT3u2bfg3zsbW1WX0dg0dmN9FxWmTOaII75Ej_6gc9-F9Bk9JSgbUpGo054ywccYrPt5AUZq6ZL6dSnBhyvJrqjt7Af99iQBZz0Q01HzbMPanf_lvgCZy5o2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349834638</pqid></control><display><type>article</type><title>Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Etaki, S. ; Konschelle, F. ; Blanter, Ya. M. ; Yamaguchi, H. ; van der Zant, H. S. J.</creator><creatorcontrib>Etaki, S. ; Konschelle, F. ; Blanter, Ya. M. ; Yamaguchi, H. ; van der Zant, H. S. J.</creatorcontrib><description>For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding instability can create self-sustained oscillators in the resonator. Here we demonstrate that a torsional mechanical resonator, which contains a direct current SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action can be so large that, in combination with complex nonlinear Josephson dynamics, it generates intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation amplitude is exploited to calibrate the displacement resolution, which is shown to be below the standard quantum limit. The suspended torsional SQUID provides an interesting platform to study on-chip laser-like physics in an electromechanical system that can be controlled by both a flux and current bias.
If the measurement sensitivity reaches the quantum limit during ultra-sensitive measurements, nanomechanical resonators interact with the detectors. Here the authors exploit this back-action to create and tune self-sustained electromechanical oscillations in a SQUID measurement system.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2827</identifier><identifier>PMID: 23653215</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/925/927/359 ; Condensed Matter ; Humanities and Social Sciences ; Mesoscopic Systems and Quantum Hall Effect ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary) ; Superconductivity</subject><ispartof>Nature communications, 2013-04, Vol.4 (1), p.1803-1803, Article 1803</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Apr 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23</citedby><cites>FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23</cites><orcidid>0000-0002-8193-2832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1349834638/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1349834638?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23653215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00832775$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Etaki, S.</creatorcontrib><creatorcontrib>Konschelle, F.</creatorcontrib><creatorcontrib>Blanter, Ya. M.</creatorcontrib><creatorcontrib>Yamaguchi, H.</creatorcontrib><creatorcontrib>van der Zant, H. S. J.</creatorcontrib><title>Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding instability can create self-sustained oscillators in the resonator. Here we demonstrate that a torsional mechanical resonator, which contains a direct current SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action can be so large that, in combination with complex nonlinear Josephson dynamics, it generates intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation amplitude is exploited to calibrate the displacement resolution, which is shown to be below the standard quantum limit. The suspended torsional SQUID provides an interesting platform to study on-chip laser-like physics in an electromechanical system that can be controlled by both a flux and current bias.
If the measurement sensitivity reaches the quantum limit during ultra-sensitive measurements, nanomechanical resonators interact with the detectors. Here the authors exploit this back-action to create and tune self-sustained electromechanical oscillations in a SQUID measurement system.</description><subject>639/766/119</subject><subject>639/925/927/359</subject><subject>Condensed Matter</subject><subject>Humanities and Social Sciences</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductivity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkdtKAzEQhoMoKtUbH0AC3nhgNcduclnqqVAQUa9DNk106-5Gk12hPr0pW7VobiYz-eZPJj8ABxidY0TFRWN8XUciSL4BdgliOMM5oZtr-x2wH-McpUUlFoxtgx1Ch5wSzHeBerCVy2IXW102dgZ9NGVV6bb0TYTeQQ1bH2LKdAUf7p8mlzDYmLJUhWUz60zqKRZw6oNt2s_M-WAsLLR5zbRZiuyBLaeraPdXcQCerq8ex7fZ9O5mMh5NM8NE3ma8oIWUhkg-I1hrVjDpGMu5IJhhxMQQUaOHhgiKCySdYZQLh4jMpcMFcYQOwEmv-6Ir9RbKWoeF8rpUt6OpWtYQEpTkOf_AiT3u2bfg3zsbW1WX0dg0dmN9FxWmTOaII75Ej_6gc9-F9Bk9JSgbUpGo054ywccYrPt5AUZq6ZL6dSnBhyvJrqjt7Af99iQBZz0Q01HzbMPanf_lvgCZy5o2</recordid><startdate>20130430</startdate><enddate>20130430</enddate><creator>Etaki, S.</creator><creator>Konschelle, F.</creator><creator>Blanter, Ya. M.</creator><creator>Yamaguchi, H.</creator><creator>van der Zant, H. S. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8193-2832</orcidid></search><sort><creationdate>20130430</creationdate><title>Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action</title><author>Etaki, S. ; Konschelle, F. ; Blanter, Ya. M. ; Yamaguchi, H. ; van der Zant, H. S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/119</topic><topic>639/925/927/359</topic><topic>Condensed Matter</topic><topic>Humanities and Social Sciences</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etaki, S.</creatorcontrib><creatorcontrib>Konschelle, F.</creatorcontrib><creatorcontrib>Blanter, Ya. M.</creatorcontrib><creatorcontrib>Yamaguchi, H.</creatorcontrib><creatorcontrib>van der Zant, H. S. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etaki, S.</au><au>Konschelle, F.</au><au>Blanter, Ya. M.</au><au>Yamaguchi, H.</au><au>van der Zant, H. S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-04-30</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1803</spage><epage>1803</epage><pages>1803-1803</pages><artnum>1803</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>For the study of nanomechanical resonators, ultra-sensitive measurement techniques are crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the back-action of the detector on the resonator cannot be neglected. If the back-action is strong enough, the corresponding instability can create self-sustained oscillators in the resonator. Here we demonstrate that a torsional mechanical resonator, which contains a direct current SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action can be so large that, in combination with complex nonlinear Josephson dynamics, it generates intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation amplitude is exploited to calibrate the displacement resolution, which is shown to be below the standard quantum limit. The suspended torsional SQUID provides an interesting platform to study on-chip laser-like physics in an electromechanical system that can be controlled by both a flux and current bias.
If the measurement sensitivity reaches the quantum limit during ultra-sensitive measurements, nanomechanical resonators interact with the detectors. Here the authors exploit this back-action to create and tune self-sustained electromechanical oscillations in a SQUID measurement system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23653215</pmid><doi>10.1038/ncomms2827</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8193-2832</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2013-04, Vol.4 (1), p.1803-1803, Article 1803 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00832775v1 |
source | Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/119 639/925/927/359 Condensed Matter Humanities and Social Sciences Mesoscopic Systems and Quantum Hall Effect multidisciplinary Physics Science Science (multidisciplinary) Superconductivity |
title | Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-sustained%20oscillations%20of%20a%20torsional%20SQUID%20resonator%20induced%20by%20Lorentz-force%20back-action&rft.jtitle=Nature%20communications&rft.au=Etaki,%20S.&rft.date=2013-04-30&rft.volume=4&rft.issue=1&rft.spage=1803&rft.epage=1803&rft.pages=1803-1803&rft.artnum=1803&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2827&rft_dat=%3Cproquest_hal_p%3E1349705051%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-5b3b99c295d21aa4b49f447582141048603ca6c2831b09fc4358f02979f1b2f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349834638&rft_id=info:pmid/23653215&rfr_iscdi=true |