Loading…

Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model

► We perform the hierarchical propagation of hybrid uncertainties in risk assessment. ► We study the effects of dependence between epistemically uncertain parameters. ► We study the effects of different representations of epistemic uncertainty. ► Different methods generate different results and deci...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2013-09, Vol.126, p.199-213
Main Authors: Pedroni, N., Zio, E., Ferrario, E., Pasanisi, A., Couplet, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-f9eaebcca3c7cc2de727c525feda0399530aa023a54cbf7b21415132baac990e3
cites cdi_FETCH-LOGICAL-c464t-f9eaebcca3c7cc2de727c525feda0399530aa023a54cbf7b21415132baac990e3
container_end_page 213
container_issue
container_start_page 199
container_title Computers & structures
container_volume 126
creator Pedroni, N.
Zio, E.
Ferrario, E.
Pasanisi, A.
Couplet, M.
description ► We perform the hierarchical propagation of hybrid uncertainties in risk assessment. ► We study the effects of dependence between epistemically uncertain parameters. ► We study the effects of different representations of epistemic uncertainty. ► Different methods generate different results and decisions in risk problems. ► Non-probabilistic representations of uncertainty produce conservative results. We consider a model for the risk-based design of a flood protection dike, and use probability distributions to represent aleatory uncertainty and possibility distributions to describe the epistemic uncertainty associated to the poorly known parameters of such probability distributions. A hybrid method is introduced to hierarchically propagate the two types of uncertainty, and the results are compared with those of a Monte Carlo-based Dempster–Shafer approach employing independent random sets and a purely probabilistic, two-level Monte Carlo approach: the risk estimates produced are similar to those of the Dempster–Shafer method and more conservative than those of the two-level Monte Carlo approach.
doi_str_mv 10.1016/j.compstruc.2013.02.003
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00839639v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794913000436</els_id><sourcerecordid>1513484293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f9eaebcca3c7cc2de727c525feda0399530aa023a54cbf7b21415132baac990e3</originalsourceid><addsrcrecordid>eNqFkU-P1DAMxSsEEsPCZyBHOLQ4f9pOjqMVMEgjcYFz5Louk6FtSpJZab89rQatxGlPVqxfnp_9iuK9hEqCbD5dKgrTknK8UqVA6gpUBaBfFDu5b22plNEvix2AqcvWGvu6eJPSBQAaA7ArpqPniJHOnnAUSwwL_sLswyzCsD077PzoU_YkcO7FHOby_-51Jo4Z_ZwfhZ9FPrNYMOLEmWPaRFBEn36LKfQ8vi1eDTgmfvev3hU_v3z-cX8sT9-_frs_nEoyjcnlYBm5I0JNLZHquVUt1aoeuEfQ1tYaEEFprA11Q9spaWQtteoQyVpgfVd8vOmecXRL9BPGRxfQu-Ph5LYewF7bRtsHubIfbuy6158rp-wmn4jHEWcO1-Q2ZbM3yurn0dV9XeumUSva3lCKIaXIw5MNCW7LzV3cU25uy82BWm1tQw63n7we6GFNxyXyvF6595Epuz74ZzX-AvRbp5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464553662</pqid></control><display><type>article</type><title>Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model</title><source>ScienceDirect Journals</source><creator>Pedroni, N. ; Zio, E. ; Ferrario, E. ; Pasanisi, A. ; Couplet, M.</creator><creatorcontrib>Pedroni, N. ; Zio, E. ; Ferrario, E. ; Pasanisi, A. ; Couplet, M.</creatorcontrib><description>► We perform the hierarchical propagation of hybrid uncertainties in risk assessment. ► We study the effects of dependence between epistemically uncertain parameters. ► We study the effects of different representations of epistemic uncertainty. ► Different methods generate different results and decisions in risk problems. ► Non-probabilistic representations of uncertainty produce conservative results. We consider a model for the risk-based design of a flood protection dike, and use probability distributions to represent aleatory uncertainty and possibility distributions to describe the epistemic uncertainty associated to the poorly known parameters of such probability distributions. A hybrid method is introduced to hierarchically propagate the two types of uncertainty, and the results are compared with those of a Monte Carlo-based Dempster–Shafer approach employing independent random sets and a purely probabilistic, two-level Monte Carlo approach: the risk estimates produced are similar to those of the Dempster–Shafer method and more conservative than those of the two-level Monte Carlo approach.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2013.02.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Dependences ; Dikes ; Engineering Sciences ; Flood protection dike ; Floods ; Fuzzy interval analysis ; Hierarchical uncertainty ; Mathematical models ; Possibility distributions ; Probabilistic methods ; Probability theory ; Risk ; Two-level Monte Carlo method ; Uncertainty</subject><ispartof>Computers &amp; structures, 2013-09, Vol.126, p.199-213</ispartof><rights>2013 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f9eaebcca3c7cc2de727c525feda0399530aa023a54cbf7b21415132baac990e3</citedby><cites>FETCH-LOGICAL-c464t-f9eaebcca3c7cc2de727c525feda0399530aa023a54cbf7b21415132baac990e3</cites><orcidid>0000-0002-7108-637X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-00839639$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedroni, N.</creatorcontrib><creatorcontrib>Zio, E.</creatorcontrib><creatorcontrib>Ferrario, E.</creatorcontrib><creatorcontrib>Pasanisi, A.</creatorcontrib><creatorcontrib>Couplet, M.</creatorcontrib><title>Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model</title><title>Computers &amp; structures</title><description>► We perform the hierarchical propagation of hybrid uncertainties in risk assessment. ► We study the effects of dependence between epistemically uncertain parameters. ► We study the effects of different representations of epistemic uncertainty. ► Different methods generate different results and decisions in risk problems. ► Non-probabilistic representations of uncertainty produce conservative results. We consider a model for the risk-based design of a flood protection dike, and use probability distributions to represent aleatory uncertainty and possibility distributions to describe the epistemic uncertainty associated to the poorly known parameters of such probability distributions. A hybrid method is introduced to hierarchically propagate the two types of uncertainty, and the results are compared with those of a Monte Carlo-based Dempster–Shafer approach employing independent random sets and a purely probabilistic, two-level Monte Carlo approach: the risk estimates produced are similar to those of the Dempster–Shafer method and more conservative than those of the two-level Monte Carlo approach.</description><subject>Computer simulation</subject><subject>Dependences</subject><subject>Dikes</subject><subject>Engineering Sciences</subject><subject>Flood protection dike</subject><subject>Floods</subject><subject>Fuzzy interval analysis</subject><subject>Hierarchical uncertainty</subject><subject>Mathematical models</subject><subject>Possibility distributions</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Risk</subject><subject>Two-level Monte Carlo method</subject><subject>Uncertainty</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU-P1DAMxSsEEsPCZyBHOLQ4f9pOjqMVMEgjcYFz5Louk6FtSpJZab89rQatxGlPVqxfnp_9iuK9hEqCbD5dKgrTknK8UqVA6gpUBaBfFDu5b22plNEvix2AqcvWGvu6eJPSBQAaA7ArpqPniJHOnnAUSwwL_sLswyzCsD077PzoU_YkcO7FHOby_-51Jo4Z_ZwfhZ9FPrNYMOLEmWPaRFBEn36LKfQ8vi1eDTgmfvev3hU_v3z-cX8sT9-_frs_nEoyjcnlYBm5I0JNLZHquVUt1aoeuEfQ1tYaEEFprA11Q9spaWQtteoQyVpgfVd8vOmecXRL9BPGRxfQu-Ph5LYewF7bRtsHubIfbuy6158rp-wmn4jHEWcO1-Q2ZbM3yurn0dV9XeumUSva3lCKIaXIw5MNCW7LzV3cU25uy82BWm1tQw63n7we6GFNxyXyvF6595Epuz74ZzX-AvRbp5Q</recordid><startdate>20130915</startdate><enddate>20130915</enddate><creator>Pedroni, N.</creator><creator>Zio, E.</creator><creator>Ferrario, E.</creator><creator>Pasanisi, A.</creator><creator>Couplet, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7108-637X</orcidid></search><sort><creationdate>20130915</creationdate><title>Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model</title><author>Pedroni, N. ; Zio, E. ; Ferrario, E. ; Pasanisi, A. ; Couplet, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f9eaebcca3c7cc2de727c525feda0399530aa023a54cbf7b21415132baac990e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Dependences</topic><topic>Dikes</topic><topic>Engineering Sciences</topic><topic>Flood protection dike</topic><topic>Floods</topic><topic>Fuzzy interval analysis</topic><topic>Hierarchical uncertainty</topic><topic>Mathematical models</topic><topic>Possibility distributions</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Risk</topic><topic>Two-level Monte Carlo method</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedroni, N.</creatorcontrib><creatorcontrib>Zio, E.</creatorcontrib><creatorcontrib>Ferrario, E.</creatorcontrib><creatorcontrib>Pasanisi, A.</creatorcontrib><creatorcontrib>Couplet, M.</creatorcontrib><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedroni, N.</au><au>Zio, E.</au><au>Ferrario, E.</au><au>Pasanisi, A.</au><au>Couplet, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model</atitle><jtitle>Computers &amp; structures</jtitle><date>2013-09-15</date><risdate>2013</risdate><volume>126</volume><spage>199</spage><epage>213</epage><pages>199-213</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>► We perform the hierarchical propagation of hybrid uncertainties in risk assessment. ► We study the effects of dependence between epistemically uncertain parameters. ► We study the effects of different representations of epistemic uncertainty. ► Different methods generate different results and decisions in risk problems. ► Non-probabilistic representations of uncertainty produce conservative results. We consider a model for the risk-based design of a flood protection dike, and use probability distributions to represent aleatory uncertainty and possibility distributions to describe the epistemic uncertainty associated to the poorly known parameters of such probability distributions. A hybrid method is introduced to hierarchically propagate the two types of uncertainty, and the results are compared with those of a Monte Carlo-based Dempster–Shafer approach employing independent random sets and a purely probabilistic, two-level Monte Carlo approach: the risk estimates produced are similar to those of the Dempster–Shafer method and more conservative than those of the two-level Monte Carlo approach.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2013.02.003</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7108-637X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2013-09, Vol.126, p.199-213
issn 0045-7949
1879-2243
language eng
recordid cdi_hal_primary_oai_HAL_hal_00839639v1
source ScienceDirect Journals
subjects Computer simulation
Dependences
Dikes
Engineering Sciences
Flood protection dike
Floods
Fuzzy interval analysis
Hierarchical uncertainty
Mathematical models
Possibility distributions
Probabilistic methods
Probability theory
Risk
Two-level Monte Carlo method
Uncertainty
title Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20propagation%20of%20probabilistic%20and%20non-probabilistic%20uncertainty%20in%20the%20parameters%20of%20a%20risk%20model&rft.jtitle=Computers%20&%20structures&rft.au=Pedroni,%20N.&rft.date=2013-09-15&rft.volume=126&rft.spage=199&rft.epage=213&rft.pages=199-213&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2013.02.003&rft_dat=%3Cproquest_hal_p%3E1513484293%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-f9eaebcca3c7cc2de727c525feda0399530aa023a54cbf7b21415132baac990e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464553662&rft_id=info:pmid/&rfr_iscdi=true