Loading…

An application of coding theory to estimating Davenport constants

We investigate a certain well-established generalization of the Davenport constant. For j a positive integer (the case j  = 1, is the classical one) and a finite Abelian group ( G , +, 0), the invariant D j ( G ) is defined as the smallest ℓ such that each sequence over G of length at least ℓ has j...

Full description

Saved in:
Bibliographic Details
Published in:Designs, codes, and cryptography codes, and cryptography, 2011, Vol.61 (1), p.105-118
Main Authors: Plagne, Alain, Schmid, Wolfgang A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-f20f4ddff7ed27c9209d85644a36abd853869cbfc6e9fc6d40a778a08020fd473
cites cdi_FETCH-LOGICAL-c322t-f20f4ddff7ed27c9209d85644a36abd853869cbfc6e9fc6d40a778a08020fd473
container_end_page 118
container_issue 1
container_start_page 105
container_title Designs, codes, and cryptography
container_volume 61
creator Plagne, Alain
Schmid, Wolfgang A.
description We investigate a certain well-established generalization of the Davenport constant. For j a positive integer (the case j  = 1, is the classical one) and a finite Abelian group ( G , +, 0), the invariant D j ( G ) is defined as the smallest ℓ such that each sequence over G of length at least ℓ has j disjoint non-empty zero-sum subsequences. We investigate these quantities for elementary 2-groups of large rank (relative to j ). Using tools from coding theory, we give fairly precise estimates for these quantities. We use our results to give improved bounds for the classical Davenport constant of certain groups.
doi_str_mv 10.1007/s10623-010-9441-5
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00851517v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00851517v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f20f4ddff7ed27c9209d85644a36abd853869cbfc6e9fc6d40a778a08020fd473</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yiHgfDXtsRqwIU3iAucoa5Kt00iqJEzavydTEUcutmW_j2W_CN0TeCQA8ikRqCnDQAC3nBMsLtCMCMmwFE19iWbQUoEJUHqNblLaAwBhQGeo63ylx_Ew9DoPwVfBVX0wg99WeWdDPFU5VDbl4auMS_NZH60fQ8xF5VPWPqdbdOX0Idm73zxHn68vH4sVXr8v3xbdGveM0owdBceNcU5aQ2XfUmhNI2rONav1ppSsqdt-4_ratiUYDlrKRkMDBTRcsjl6mPbu9EGNsVwUTyroQa26tTr3ABpBBJFHUrRk0vYxpBSt-wMIqLNfavJLFb_U2S8lCkMnJhWt39qo9uE7-vLSP9APWehtTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An application of coding theory to estimating Davenport constants</title><source>Springer Link</source><creator>Plagne, Alain ; Schmid, Wolfgang A.</creator><creatorcontrib>Plagne, Alain ; Schmid, Wolfgang A.</creatorcontrib><description>We investigate a certain well-established generalization of the Davenport constant. For j a positive integer (the case j  = 1, is the classical one) and a finite Abelian group ( G , +, 0), the invariant D j ( G ) is defined as the smallest ℓ such that each sequence over G of length at least ℓ has j disjoint non-empty zero-sum subsequences. We investigate these quantities for elementary 2-groups of large rank (relative to j ). Using tools from coding theory, we give fairly precise estimates for these quantities. We use our results to give improved bounds for the classical Davenport constant of certain groups.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-010-9441-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Computer Science ; Cryptology ; Data Structures and Information Theory ; Discrete Mathematics in Computer Science ; Information and Communication ; Mathematics</subject><ispartof>Designs, codes, and cryptography, 2011, Vol.61 (1), p.105-118</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f20f4ddff7ed27c9209d85644a36abd853869cbfc6e9fc6d40a778a08020fd473</citedby><cites>FETCH-LOGICAL-c322t-f20f4ddff7ed27c9209d85644a36abd853869cbfc6e9fc6d40a778a08020fd473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00851517$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Plagne, Alain</creatorcontrib><creatorcontrib>Schmid, Wolfgang A.</creatorcontrib><title>An application of coding theory to estimating Davenport constants</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>We investigate a certain well-established generalization of the Davenport constant. For j a positive integer (the case j  = 1, is the classical one) and a finite Abelian group ( G , +, 0), the invariant D j ( G ) is defined as the smallest ℓ such that each sequence over G of length at least ℓ has j disjoint non-empty zero-sum subsequences. We investigate these quantities for elementary 2-groups of large rank (relative to j ). Using tools from coding theory, we give fairly precise estimates for these quantities. We use our results to give improved bounds for the classical Davenport constant of certain groups.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Information and Communication</subject><subject>Mathematics</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yiHgfDXtsRqwIU3iAucoa5Kt00iqJEzavydTEUcutmW_j2W_CN0TeCQA8ikRqCnDQAC3nBMsLtCMCMmwFE19iWbQUoEJUHqNblLaAwBhQGeo63ylx_Ew9DoPwVfBVX0wg99WeWdDPFU5VDbl4auMS_NZH60fQ8xF5VPWPqdbdOX0Idm73zxHn68vH4sVXr8v3xbdGveM0owdBceNcU5aQ2XfUmhNI2rONav1ppSsqdt-4_ratiUYDlrKRkMDBTRcsjl6mPbu9EGNsVwUTyroQa26tTr3ABpBBJFHUrRk0vYxpBSt-wMIqLNfavJLFb_U2S8lCkMnJhWt39qo9uE7-vLSP9APWehtTA</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Plagne, Alain</creator><creator>Schmid, Wolfgang A.</creator><general>Springer US</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2011</creationdate><title>An application of coding theory to estimating Davenport constants</title><author>Plagne, Alain ; Schmid, Wolfgang A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f20f4ddff7ed27c9209d85644a36abd853869cbfc6e9fc6d40a778a08020fd473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Information and Communication</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plagne, Alain</creatorcontrib><creatorcontrib>Schmid, Wolfgang A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plagne, Alain</au><au>Schmid, Wolfgang A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of coding theory to estimating Davenport constants</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2011</date><risdate>2011</risdate><volume>61</volume><issue>1</issue><spage>105</spage><epage>118</epage><pages>105-118</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>We investigate a certain well-established generalization of the Davenport constant. For j a positive integer (the case j  = 1, is the classical one) and a finite Abelian group ( G , +, 0), the invariant D j ( G ) is defined as the smallest ℓ such that each sequence over G of length at least ℓ has j disjoint non-empty zero-sum subsequences. We investigate these quantities for elementary 2-groups of large rank (relative to j ). Using tools from coding theory, we give fairly precise estimates for these quantities. We use our results to give improved bounds for the classical Davenport constant of certain groups.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10623-010-9441-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2011, Vol.61 (1), p.105-118
issn 0925-1022
1573-7586
language eng
recordid cdi_hal_primary_oai_HAL_hal_00851517v1
source Springer Link
subjects Circuits
Coding and Information Theory
Computer Science
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Information and Communication
Mathematics
title An application of coding theory to estimating Davenport constants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20coding%20theory%20to%20estimating%20Davenport%20constants&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Plagne,%20Alain&rft.date=2011&rft.volume=61&rft.issue=1&rft.spage=105&rft.epage=118&rft.pages=105-118&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-010-9441-5&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00851517v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-f20f4ddff7ed27c9209d85644a36abd853869cbfc6e9fc6d40a778a08020fd473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true