Loading…
Deep Water Circulation, Residence Time, and Chemistry in a Karst Complex
We investigated the hydrochemistry of a complex karst hydrosystem made of two carbonate units along a coastal lagoon. Ground water emerges on the lagoon floor from a submarine spring. In addition, thermal waters circulate through the limestone and mix with karst water near the lagoon shore. A distin...
Saved in:
Published in: | Ground water 2003-11, Vol.41 (6), p.790-805 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated the hydrochemistry of a complex karst hydrosystem made of two carbonate units along a coastal lagoon. Ground water emerges on the lagoon floor from a submarine spring. In addition, thermal waters circulate through the limestone and mix with karst water near the lagoon shore.
A distinction between the water from the two carbonate units is related to marine influences and human activities. In one of the massifs, the data show an incongruent dissolution of dolomite with time. In the other system, a slight contamination by saline fluids from the thermal reservoir has led to high calcium and magnesium concentrations. 36C1, I4C, and 3H data constrain the residence time of the water, and allow for the distinguishing of four circulation types: (1) shallow surface circulation (primarily above sea level) in the karstic units with short residence times ( |
---|---|
ISSN: | 0017-467X 1745-6584 |
DOI: | 10.1111/j.1745-6584.2003.tb02420.x |