Loading…
Gray molasses cooling of $^{39}$K to a high phase-space density
We present new techniques in cooling $^{39}$K atoms using laser light close to the D1 transition. First, a new compressed-MOT configuration is taking advantage of gray molasses type cooling induced by blue-detuned D1 light. It yields an optimized density of atoms. Then, we use pure D1 gray molasses...
Saved in:
Published in: | Europhysics letters 2013-12, Vol.104 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present new techniques in cooling $^{39}$K atoms using laser light close to the D1 transition. First, a new compressed-MOT configuration is taking advantage of gray molasses type cooling induced by blue-detuned D1 light. It yields an optimized density of atoms. Then, we use pure D1 gray molasses to further cool the atoms to an ultra-low temperature of 6\,$\mu$K. The resulting phase-space density is $2\times 10^{-4}$ and will ease future experiments with ultracold potassium. As an example, we use it to directly load up to $3\times 10^7$ atoms in a far detuned optical trap, a result that opens the way to the all-optical production of potassium degenerate gases. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/104/63002 |