Loading…

Spatial location priors for Gaussian model based reverberant audio source separation

We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which a...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2013-09, Vol.2013 (1), p.1-11, Article 149
Main Authors: Duong, Ngoc Q K, Vincent, Emmanuel, Gribonval, Rémi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723
cites cdi_FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723
container_end_page 11
container_issue 1
container_start_page 1
container_title EURASIP journal on advances in signal processing
container_volume 2013
creator Duong, Ngoc Q K
Vincent, Emmanuel
Gribonval, Rémi
description We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.
doi_str_mv 10.1186/1687-6180-2013-149
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00870191v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864528978</sourcerecordid><originalsourceid>FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsoqKtfwFOOeqhmkrZJj8viP1jwoJ7DtJ1qpW3WpF3w25taERXxNMPMey_hN1F0AvwcQGcXkGkVZ6B5LDjIGJJ8Jzr4Gu5-6_ejQ-9fOE8zwcVB9HC_waHBlrW2DI3t2cY11nlWW8eucfS-wZ51tqKWFeipYo625Apy2A8Mx6qxzNvRlcQ8bdB9ZBxFezW2no4_6yJ6vLp8WN3E67vr29VyHRcyT4YYQVVcAeaa5yBKzEjVHDRmKS8VgJIoUMiUagkZ5TzJE51IiTUAL9JUCbmIzubcZ2xN-HeH7s1YbMzNcm2mGedacchhC0F7OWuLxnZUldQP7pfr56a0nZmomYmambCagDXknM45G2dfR_KD6RpfUttiT3b0JlwjSYXOlQ5SMUtLZ713VH-9BtxMZ_s7X84mH8T9EznzEvD2AeN_rnfj05kR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864528978</pqid></control><display><type>article</type><title>Spatial location priors for Gaussian model based reverberant audio source separation</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Duong, Ngoc Q K ; Vincent, Emmanuel ; Gribonval, Rémi</creator><creatorcontrib>Duong, Ngoc Q K ; Vincent, Emmanuel ; Gribonval, Rémi</creatorcontrib><description>We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1186/1687-6180-2013-149</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Computer Science ; Covariance ; Engineering ; Informed Acoustic Source Separation ; Mathematical models ; Maximum likelihood estimation ; Permutations ; Power spectra ; Probability theory ; Quantum Information Technology ; Separation ; Signal and Image Processing ; Signal,Image and Speech Processing ; Spintronics</subject><ispartof>EURASIP journal on advances in signal processing, 2013-09, Vol.2013 (1), p.1-11, Article 149</ispartof><rights>Duong et al.; licensee Springer. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723</citedby><cites>FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723</cites><orcidid>0000-0002-9450-8125 ; 0000-0002-0183-7289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906,36994</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00870191$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duong, Ngoc Q K</creatorcontrib><creatorcontrib>Vincent, Emmanuel</creatorcontrib><creatorcontrib>Gribonval, Rémi</creatorcontrib><title>Spatial location priors for Gaussian model based reverberant audio source separation</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Covariance</subject><subject>Engineering</subject><subject>Informed Acoustic Source Separation</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Permutations</subject><subject>Power spectra</subject><subject>Probability theory</subject><subject>Quantum Information Technology</subject><subject>Separation</subject><subject>Signal and Image Processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYsoqKtfwFOOeqhmkrZJj8viP1jwoJ7DtJ1qpW3WpF3w25taERXxNMPMey_hN1F0AvwcQGcXkGkVZ6B5LDjIGJJ8Jzr4Gu5-6_ejQ-9fOE8zwcVB9HC_waHBlrW2DI3t2cY11nlWW8eucfS-wZ51tqKWFeipYo625Apy2A8Mx6qxzNvRlcQ8bdB9ZBxFezW2no4_6yJ6vLp8WN3E67vr29VyHRcyT4YYQVVcAeaa5yBKzEjVHDRmKS8VgJIoUMiUagkZ5TzJE51IiTUAL9JUCbmIzubcZ2xN-HeH7s1YbMzNcm2mGedacchhC0F7OWuLxnZUldQP7pfr56a0nZmomYmambCagDXknM45G2dfR_KD6RpfUttiT3b0JlwjSYXOlQ5SMUtLZ713VH-9BtxMZ_s7X84mH8T9EznzEvD2AeN_rnfj05kR</recordid><startdate>20130923</startdate><enddate>20130923</enddate><creator>Duong, Ngoc Q K</creator><creator>Vincent, Emmanuel</creator><creator>Gribonval, Rémi</creator><general>Springer International Publishing</general><general>BioMed Central Ltd</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><orcidid>https://orcid.org/0000-0002-0183-7289</orcidid></search><sort><creationdate>20130923</creationdate><title>Spatial location priors for Gaussian model based reverberant audio source separation</title><author>Duong, Ngoc Q K ; Vincent, Emmanuel ; Gribonval, Rémi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Covariance</topic><topic>Engineering</topic><topic>Informed Acoustic Source Separation</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Permutations</topic><topic>Power spectra</topic><topic>Probability theory</topic><topic>Quantum Information Technology</topic><topic>Separation</topic><topic>Signal and Image Processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong, Ngoc Q K</creatorcontrib><creatorcontrib>Vincent, Emmanuel</creatorcontrib><creatorcontrib>Gribonval, Rémi</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong, Ngoc Q K</au><au>Vincent, Emmanuel</au><au>Gribonval, Rémi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial location priors for Gaussian model based reverberant audio source separation</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2013-09-23</date><risdate>2013</risdate><volume>2013</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>149</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/1687-6180-2013-149</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><orcidid>https://orcid.org/0000-0002-0183-7289</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP journal on advances in signal processing, 2013-09, Vol.2013 (1), p.1-11, Article 149
issn 1687-6180
1687-6172
1687-6180
language eng
recordid cdi_hal_primary_oai_HAL_hal_00870191v1
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Algorithms
Computer Science
Covariance
Engineering
Informed Acoustic Source Separation
Mathematical models
Maximum likelihood estimation
Permutations
Power spectra
Probability theory
Quantum Information Technology
Separation
Signal and Image Processing
Signal,Image and Speech Processing
Spintronics
title Spatial location priors for Gaussian model based reverberant audio source separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20location%20priors%20for%20Gaussian%20model%20based%20reverberant%20audio%20source%20separation&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Duong,%20Ngoc%20Q%20K&rft.date=2013-09-23&rft.volume=2013&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=149&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1186/1687-6180-2013-149&rft_dat=%3Cproquest_hal_p%3E1864528978%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864528978&rft_id=info:pmid/&rfr_iscdi=true