Loading…
Spatial location priors for Gaussian model based reverberant audio source separation
We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which a...
Saved in:
Published in: | EURASIP journal on advances in signal processing 2013-09, Vol.2013 (1), p.1-11, Article 149 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723 |
---|---|
cites | cdi_FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 1 |
container_title | EURASIP journal on advances in signal processing |
container_volume | 2013 |
creator | Duong, Ngoc Q K Vincent, Emmanuel Gribonval, Rémi |
description | We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future. |
doi_str_mv | 10.1186/1687-6180-2013-149 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00870191v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864528978</sourcerecordid><originalsourceid>FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsoqKtfwFOOeqhmkrZJj8viP1jwoJ7DtJ1qpW3WpF3w25taERXxNMPMey_hN1F0AvwcQGcXkGkVZ6B5LDjIGJJ8Jzr4Gu5-6_ejQ-9fOE8zwcVB9HC_waHBlrW2DI3t2cY11nlWW8eucfS-wZ51tqKWFeipYo625Apy2A8Mx6qxzNvRlcQ8bdB9ZBxFezW2no4_6yJ6vLp8WN3E67vr29VyHRcyT4YYQVVcAeaa5yBKzEjVHDRmKS8VgJIoUMiUagkZ5TzJE51IiTUAL9JUCbmIzubcZ2xN-HeH7s1YbMzNcm2mGedacchhC0F7OWuLxnZUldQP7pfr56a0nZmomYmambCagDXknM45G2dfR_KD6RpfUttiT3b0JlwjSYXOlQ5SMUtLZ713VH-9BtxMZ_s7X84mH8T9EznzEvD2AeN_rnfj05kR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864528978</pqid></control><display><type>article</type><title>Spatial location priors for Gaussian model based reverberant audio source separation</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Duong, Ngoc Q K ; Vincent, Emmanuel ; Gribonval, Rémi</creator><creatorcontrib>Duong, Ngoc Q K ; Vincent, Emmanuel ; Gribonval, Rémi</creatorcontrib><description>We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1186/1687-6180-2013-149</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Computer Science ; Covariance ; Engineering ; Informed Acoustic Source Separation ; Mathematical models ; Maximum likelihood estimation ; Permutations ; Power spectra ; Probability theory ; Quantum Information Technology ; Separation ; Signal and Image Processing ; Signal,Image and Speech Processing ; Spintronics</subject><ispartof>EURASIP journal on advances in signal processing, 2013-09, Vol.2013 (1), p.1-11, Article 149</ispartof><rights>Duong et al.; licensee Springer. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723</citedby><cites>FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723</cites><orcidid>0000-0002-9450-8125 ; 0000-0002-0183-7289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906,36994</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00870191$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duong, Ngoc Q K</creatorcontrib><creatorcontrib>Vincent, Emmanuel</creatorcontrib><creatorcontrib>Gribonval, Rémi</creatorcontrib><title>Spatial location priors for Gaussian model based reverberant audio source separation</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Covariance</subject><subject>Engineering</subject><subject>Informed Acoustic Source Separation</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Permutations</subject><subject>Power spectra</subject><subject>Probability theory</subject><subject>Quantum Information Technology</subject><subject>Separation</subject><subject>Signal and Image Processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYsoqKtfwFOOeqhmkrZJj8viP1jwoJ7DtJ1qpW3WpF3w25taERXxNMPMey_hN1F0AvwcQGcXkGkVZ6B5LDjIGJJ8Jzr4Gu5-6_ejQ-9fOE8zwcVB9HC_waHBlrW2DI3t2cY11nlWW8eucfS-wZ51tqKWFeipYo625Apy2A8Mx6qxzNvRlcQ8bdB9ZBxFezW2no4_6yJ6vLp8WN3E67vr29VyHRcyT4YYQVVcAeaa5yBKzEjVHDRmKS8VgJIoUMiUagkZ5TzJE51IiTUAL9JUCbmIzubcZ2xN-HeH7s1YbMzNcm2mGedacchhC0F7OWuLxnZUldQP7pfr56a0nZmomYmambCagDXknM45G2dfR_KD6RpfUttiT3b0JlwjSYXOlQ5SMUtLZ713VH-9BtxMZ_s7X84mH8T9EznzEvD2AeN_rnfj05kR</recordid><startdate>20130923</startdate><enddate>20130923</enddate><creator>Duong, Ngoc Q K</creator><creator>Vincent, Emmanuel</creator><creator>Gribonval, Rémi</creator><general>Springer International Publishing</general><general>BioMed Central Ltd</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><orcidid>https://orcid.org/0000-0002-0183-7289</orcidid></search><sort><creationdate>20130923</creationdate><title>Spatial location priors for Gaussian model based reverberant audio source separation</title><author>Duong, Ngoc Q K ; Vincent, Emmanuel ; Gribonval, Rémi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Covariance</topic><topic>Engineering</topic><topic>Informed Acoustic Source Separation</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Permutations</topic><topic>Power spectra</topic><topic>Probability theory</topic><topic>Quantum Information Technology</topic><topic>Separation</topic><topic>Signal and Image Processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong, Ngoc Q K</creatorcontrib><creatorcontrib>Vincent, Emmanuel</creatorcontrib><creatorcontrib>Gribonval, Rémi</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong, Ngoc Q K</au><au>Vincent, Emmanuel</au><au>Gribonval, Rémi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial location priors for Gaussian model based reverberant audio source separation</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2013-09-23</date><risdate>2013</risdate><volume>2013</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>149</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/1687-6180-2013-149</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><orcidid>https://orcid.org/0000-0002-0183-7289</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6180 |
ispartof | EURASIP journal on advances in signal processing, 2013-09, Vol.2013 (1), p.1-11, Article 149 |
issn | 1687-6180 1687-6172 1687-6180 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00870191v1 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Algorithms Computer Science Covariance Engineering Informed Acoustic Source Separation Mathematical models Maximum likelihood estimation Permutations Power spectra Probability theory Quantum Information Technology Separation Signal and Image Processing Signal,Image and Speech Processing Spintronics |
title | Spatial location priors for Gaussian model based reverberant audio source separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20location%20priors%20for%20Gaussian%20model%20based%20reverberant%20audio%20source%20separation&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Duong,%20Ngoc%20Q%20K&rft.date=2013-09-23&rft.volume=2013&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=149&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1186/1687-6180-2013-149&rft_dat=%3Cproquest_hal_p%3E1864528978%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b394t-a17d071a980912ca6e7f018a650c71173a2a235ef316e904948433af110b55723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864528978&rft_id=info:pmid/&rfr_iscdi=true |