Loading…
Unwinding relaxation dynamics of polymers
The relaxation dynamics of a polymer wound around a fixed obstacle constitutes a fundamental instance of polymer with twist and torque, and it is also of relevance for DNA denaturation dynamics. We investigate it by simulations and Langevin equation analysis. The latter predicts a relaxation time sc...
Saved in:
Published in: | Physical review letters 2013-02, Vol.110 (6), p.068301-068301, Article 068301 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The relaxation dynamics of a polymer wound around a fixed obstacle constitutes a fundamental instance of polymer with twist and torque, and it is also of relevance for DNA denaturation dynamics. We investigate it by simulations and Langevin equation analysis. The latter predicts a relaxation time scaling as a power of the polymer length times a logarithmic correction related to the equilibrium fluctuations of the winding angle. The numerical data support this result and show that at short times the winding angle decreases as a power law. This is also in agreement with the Langevin equation provided a winding-dependent friction is used, suggesting that such reduced description of the system captures the basic features of the problem. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.110.068301 |