Loading…
Control of the soliton self-frequency shift dynamics using topographic optical fibers
We demonstrate that the dynamics of the soliton self-frequency shift can be accurately controlled by using tapered optical fibers with optimized longitudinal profile shape (that we term topographic fibers). The tapering profiles tailored for a targeted soliton spectral trajectory through dispersion...
Saved in:
Published in: | Optics letters 2013-09, Vol.38 (17), p.3390-3393 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate that the dynamics of the soliton self-frequency shift can be accurately controlled by using tapered optical fibers with optimized longitudinal profile shape (that we term topographic fibers). The tapering profiles tailored for a targeted soliton spectral trajectory through dispersion and nonlinearity management are determined by an inverse algorithm. This control is demonstrated experimentally with topographic photonic crystal fibers fabricated directly on a drawing tower. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.38.003390 |