Loading…
Design of poly(N-acryloylglycine) materials for incorporation of microorganisms
To incorporate microorganisms and to preserve their integrity, new matrices of poly(N‐acryloylglycine) have been designed under appropriate conditions. To understand the interactions between the microorganisms and the organic part of the matrices, different conetworks of poly(N‐acryloylglycine) have...
Saved in:
Published in: | Journal of applied polymer science 2013-10, Vol.130 (2), p.835-841 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4692-e85d39d6733ad4ff4d3bff961b71e22b50717ad896dfb3dfdf4b8aa49324dd713 |
---|---|
cites | cdi_FETCH-LOGICAL-c4692-e85d39d6733ad4ff4d3bff961b71e22b50717ad896dfb3dfdf4b8aa49324dd713 |
container_end_page | 841 |
container_issue | 2 |
container_start_page | 835 |
container_title | Journal of applied polymer science |
container_volume | 130 |
creator | Ringeard, Jean-Marie Griesmar, Pascal Caplain, Emmanuel Michiel, Magalie Serfaty, Stéphane Huerou, Jean-Yves Le Marinkova, Desislava Yotova, Lyubov |
description | To incorporate microorganisms and to preserve their integrity, new matrices of poly(N‐acryloylglycine) have been designed under appropriate conditions. To understand the interactions between the microorganisms and the organic part of the matrices, different conetworks of poly(N‐acryloylglycine) have been synthesized and characterized. Copolymerization with two crosslinkers was performed with different compositions. The thermal and swelling properties of conetworks are specifically controlled and compared. These investigations show that the swelling ratio of these materials is compatible with the incorporation of biomolecules in these matrices. They successfully permit Pseudomonasspecies 1625 bacteria incorporation. The biological activity of bacteria is also preserved, allowing the use of these materials for innovative biological applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 835‐841, 2013 |
doi_str_mv | 10.1002/app.39242 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00905110v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439776148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4692-e85d39d6733ad4ff4d3bff961b71e22b50717ad896dfb3dfdf4b8aa49324dd713</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhS1EJYaWBf8gEkJqF2n9ShwvRy20iFFbiYGys25ie3Bx4tSeAfLv8XTKICGxsnT9nXMfB6HXBJ8SjOkZjOMpk5TTZ2hGsBQlr2nzHM3yHykbKasX6GVK9xgTUuF6hm4uTHKroQi2GIOfjq9L6OLkw-RXfurcYE6KHtYmOvCpsCEWbuhCHEOEtQuPst51MYS4gsGlPh2hA5tR8-rpPUSf379bnl-Vi5vLD-fzRdnxWtLSNJVmUteCMdDcWq5Za62sSSuIobStsCACdCNrbVumrba8bQC4ZJRrLQg7RCc732_g1RhdD3FSAZy6mi_UtoaxxBUh-MeWPd6xYwwPG5PWqnepM97DYMImKcKZFKImvMnom3_Q-7CJQ94kU4QyVmGG_zbPm6cUjd1PQLDaxqByDOoxhsy-fXKE1IG3EYbOpb2Aikrk9ixzZzvup_Nm-r-hmt_e_nEudwqX1ubXXgHxu8p3FZW6u75UdxefyPLjl6X6yn4DUCik2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412335030</pqid></control><display><type>article</type><title>Design of poly(N-acryloylglycine) materials for incorporation of microorganisms</title><source>Wiley</source><creator>Ringeard, Jean-Marie ; Griesmar, Pascal ; Caplain, Emmanuel ; Michiel, Magalie ; Serfaty, Stéphane ; Huerou, Jean-Yves Le ; Marinkova, Desislava ; Yotova, Lyubov</creator><creatorcontrib>Ringeard, Jean-Marie ; Griesmar, Pascal ; Caplain, Emmanuel ; Michiel, Magalie ; Serfaty, Stéphane ; Huerou, Jean-Yves Le ; Marinkova, Desislava ; Yotova, Lyubov</creatorcontrib><description>To incorporate microorganisms and to preserve their integrity, new matrices of poly(N‐acryloylglycine) have been designed under appropriate conditions. To understand the interactions between the microorganisms and the organic part of the matrices, different conetworks of poly(N‐acryloylglycine) have been synthesized and characterized. Copolymerization with two crosslinkers was performed with different compositions. The thermal and swelling properties of conetworks are specifically controlled and compared. These investigations show that the swelling ratio of these materials is compatible with the incorporation of biomolecules in these matrices. They successfully permit Pseudomonasspecies 1625 bacteria incorporation. The biological activity of bacteria is also preserved, allowing the use of these materials for innovative biological applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 835‐841, 2013</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.39242</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; biocompatibility ; biomedical applications ; crosslinking ; Exact sciences and technology ; Materials science ; microscopy ; Organic polymers ; Physicochemistry of polymers ; Polymers ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Journal of applied polymer science, 2013-10, Vol.130 (2), p.835-841</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4692-e85d39d6733ad4ff4d3bff961b71e22b50717ad896dfb3dfdf4b8aa49324dd713</citedby><cites>FETCH-LOGICAL-c4692-e85d39d6733ad4ff4d3bff961b71e22b50717ad896dfb3dfdf4b8aa49324dd713</cites><orcidid>0000-0002-7055-1524 ; 0000-0002-8798-5361 ; 0000-0002-3982-0853 ; 0000-0002-0273-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27574393$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00905110$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ringeard, Jean-Marie</creatorcontrib><creatorcontrib>Griesmar, Pascal</creatorcontrib><creatorcontrib>Caplain, Emmanuel</creatorcontrib><creatorcontrib>Michiel, Magalie</creatorcontrib><creatorcontrib>Serfaty, Stéphane</creatorcontrib><creatorcontrib>Huerou, Jean-Yves Le</creatorcontrib><creatorcontrib>Marinkova, Desislava</creatorcontrib><creatorcontrib>Yotova, Lyubov</creatorcontrib><title>Design of poly(N-acryloylglycine) materials for incorporation of microorganisms</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>To incorporate microorganisms and to preserve their integrity, new matrices of poly(N‐acryloylglycine) have been designed under appropriate conditions. To understand the interactions between the microorganisms and the organic part of the matrices, different conetworks of poly(N‐acryloylglycine) have been synthesized and characterized. Copolymerization with two crosslinkers was performed with different compositions. The thermal and swelling properties of conetworks are specifically controlled and compared. These investigations show that the swelling ratio of these materials is compatible with the incorporation of biomolecules in these matrices. They successfully permit Pseudomonasspecies 1625 bacteria incorporation. The biological activity of bacteria is also preserved, allowing the use of these materials for innovative biological applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 835‐841, 2013</description><subject>Applied sciences</subject><subject>biocompatibility</subject><subject>biomedical applications</subject><subject>crosslinking</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>microscopy</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kUtv1DAUhS1EJYaWBf8gEkJqF2n9ShwvRy20iFFbiYGys25ie3Bx4tSeAfLv8XTKICGxsnT9nXMfB6HXBJ8SjOkZjOMpk5TTZ2hGsBQlr2nzHM3yHykbKasX6GVK9xgTUuF6hm4uTHKroQi2GIOfjq9L6OLkw-RXfurcYE6KHtYmOvCpsCEWbuhCHEOEtQuPst51MYS4gsGlPh2hA5tR8-rpPUSf379bnl-Vi5vLD-fzRdnxWtLSNJVmUteCMdDcWq5Za62sSSuIobStsCACdCNrbVumrba8bQC4ZJRrLQg7RCc732_g1RhdD3FSAZy6mi_UtoaxxBUh-MeWPd6xYwwPG5PWqnepM97DYMImKcKZFKImvMnom3_Q-7CJQ94kU4QyVmGG_zbPm6cUjd1PQLDaxqByDOoxhsy-fXKE1IG3EYbOpb2Aikrk9ixzZzvup_Nm-r-hmt_e_nEudwqX1ubXXgHxu8p3FZW6u75UdxefyPLjl6X6yn4DUCik2w</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>Ringeard, Jean-Marie</creator><creator>Griesmar, Pascal</creator><creator>Caplain, Emmanuel</creator><creator>Michiel, Magalie</creator><creator>Serfaty, Stéphane</creator><creator>Huerou, Jean-Yves Le</creator><creator>Marinkova, Desislava</creator><creator>Yotova, Lyubov</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7055-1524</orcidid><orcidid>https://orcid.org/0000-0002-8798-5361</orcidid><orcidid>https://orcid.org/0000-0002-3982-0853</orcidid><orcidid>https://orcid.org/0000-0002-0273-4986</orcidid></search><sort><creationdate>20131015</creationdate><title>Design of poly(N-acryloylglycine) materials for incorporation of microorganisms</title><author>Ringeard, Jean-Marie ; Griesmar, Pascal ; Caplain, Emmanuel ; Michiel, Magalie ; Serfaty, Stéphane ; Huerou, Jean-Yves Le ; Marinkova, Desislava ; Yotova, Lyubov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4692-e85d39d6733ad4ff4d3bff961b71e22b50717ad896dfb3dfdf4b8aa49324dd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>biocompatibility</topic><topic>biomedical applications</topic><topic>crosslinking</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>microscopy</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ringeard, Jean-Marie</creatorcontrib><creatorcontrib>Griesmar, Pascal</creatorcontrib><creatorcontrib>Caplain, Emmanuel</creatorcontrib><creatorcontrib>Michiel, Magalie</creatorcontrib><creatorcontrib>Serfaty, Stéphane</creatorcontrib><creatorcontrib>Huerou, Jean-Yves Le</creatorcontrib><creatorcontrib>Marinkova, Desislava</creatorcontrib><creatorcontrib>Yotova, Lyubov</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ringeard, Jean-Marie</au><au>Griesmar, Pascal</au><au>Caplain, Emmanuel</au><au>Michiel, Magalie</au><au>Serfaty, Stéphane</au><au>Huerou, Jean-Yves Le</au><au>Marinkova, Desislava</au><au>Yotova, Lyubov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of poly(N-acryloylglycine) materials for incorporation of microorganisms</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2013-10-15</date><risdate>2013</risdate><volume>130</volume><issue>2</issue><spage>835</spage><epage>841</epage><pages>835-841</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>To incorporate microorganisms and to preserve their integrity, new matrices of poly(N‐acryloylglycine) have been designed under appropriate conditions. To understand the interactions between the microorganisms and the organic part of the matrices, different conetworks of poly(N‐acryloylglycine) have been synthesized and characterized. Copolymerization with two crosslinkers was performed with different compositions. The thermal and swelling properties of conetworks are specifically controlled and compared. These investigations show that the swelling ratio of these materials is compatible with the incorporation of biomolecules in these matrices. They successfully permit Pseudomonasspecies 1625 bacteria incorporation. The biological activity of bacteria is also preserved, allowing the use of these materials for innovative biological applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 835‐841, 2013</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/app.39242</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7055-1524</orcidid><orcidid>https://orcid.org/0000-0002-8798-5361</orcidid><orcidid>https://orcid.org/0000-0002-3982-0853</orcidid><orcidid>https://orcid.org/0000-0002-0273-4986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2013-10, Vol.130 (2), p.835-841 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00905110v1 |
source | Wiley |
subjects | Applied sciences biocompatibility biomedical applications crosslinking Exact sciences and technology Materials science microscopy Organic polymers Physicochemistry of polymers Polymers Polymers with particular properties Preparation, kinetics, thermodynamics, mechanism and catalysts |
title | Design of poly(N-acryloylglycine) materials for incorporation of microorganisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20poly(N-acryloylglycine)%20materials%20for%20incorporation%20of%20microorganisms&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Ringeard,%20Jean-Marie&rft.date=2013-10-15&rft.volume=130&rft.issue=2&rft.spage=835&rft.epage=841&rft.pages=835-841&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.39242&rft_dat=%3Cproquest_hal_p%3E1439776148%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4692-e85d39d6733ad4ff4d3bff961b71e22b50717ad896dfb3dfdf4b8aa49324dd713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1412335030&rft_id=info:pmid/&rfr_iscdi=true |