Loading…

Effect of initial water content on undrained shear behaviour of reconstituted clays

Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w 0 on undrained strength behaviour. The values of w 0 were adjusted within the range of 1·0–2·0 times the liquid limit. The predominan...

Full description

Saved in:
Bibliographic Details
Published in:Géotechnique 2013-05, Vol.63 (6), p.441-450
Main Authors: HONG, Z.-S, BIAN, X, CUI, Y.-J, GAO, Y.-F, ZENG, L.-L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03
cites cdi_FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03
container_end_page 450
container_issue 6
container_start_page 441
container_title Géotechnique
container_volume 63
creator HONG, Z.-S
BIAN, X
CUI, Y.-J
GAO, Y.-F
ZENG, L.-L
description Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w 0 on undrained strength behaviour. The values of w 0 were adjusted within the range of 1·0–2·0 times the liquid limit. The predominant clay mineral is identified as illite for the considered clays, based on a semi-quantitative analysis of the X-ray diffraction patterns. The laboratory tests show that the stress–strain curve in terms of deviator stress against axial strain and the effective stress path in terms of deviator stress against effective mean stress are significantly affected by w 0 . The undrained strength ratio R* su , defined as the ratio of the undrained shear strength S* u to the isotropic consolidation stress, varies with w 0 within a wide spectrum, ranging from 0·28 to 0·60 for the three reconstituted clays investigated. The relationship between void index I v and S* u changes with R* su , and becomes identical to the intrinsic strength line proposed by Chandler when R* su = 0·33. It is also evidenced from the laboratory tests that the value of S* u depends on both the water content and the liquid limit.
doi_str_mv 10.1680/geot.11.P.114
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00926849v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372608867</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMouH4cvRdE0EPXpEnT5ijiFyy4oJ7DNJ24kZpqkir735tlxYOXGZj5vcc8hpATRudMtvTyFcc0Z2y-zEXskBlralY2spa7ZEYpk2Vb03qfHMT4RmlFVdvMyNONtWhSMdrCeZccDMU3JAyFGX1Cnxe-mHwfwHnsi7hCCEWHK_hy4xQ2qoCZjMmlKWXADLCOR2TPwhDx-Lcfkpfbm-fr-3LxePdwfbUogbd1KisAoTi0QnUomLJYddLWvRCsVrZT0nAljADeSI59B9RWEpqOdz3mLMZSfkgutr4rGPRHcO8Q1noEp--vFnozo1RVMvt_scyeb9mPMH5OGJN-d9HgMIDHcYqa8aaStG1lk9HTf-hbzupzkkwJJUXLmcxUuaVMGGMMaP8uYFRv3qE379CM6WUuIvNnv64QDQw2gDcu_omqpsoixfkPWn2Ksw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349648316</pqid></control><display><type>article</type><title>Effect of initial water content on undrained shear behaviour of reconstituted clays</title><source>ICE Virtual Library Journals</source><creator>HONG, Z.-S ; BIAN, X ; CUI, Y.-J ; GAO, Y.-F ; ZENG, L.-L</creator><creatorcontrib>HONG, Z.-S ; BIAN, X ; CUI, Y.-J ; GAO, Y.-F ; ZENG, L.-L</creatorcontrib><description>Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w 0 on undrained strength behaviour. The values of w 0 were adjusted within the range of 1·0–2·0 times the liquid limit. The predominant clay mineral is identified as illite for the considered clays, based on a semi-quantitative analysis of the X-ray diffraction patterns. The laboratory tests show that the stress–strain curve in terms of deviator stress against axial strain and the effective stress path in terms of deviator stress against effective mean stress are significantly affected by w 0 . The undrained strength ratio R* su , defined as the ratio of the undrained shear strength S* u to the isotropic consolidation stress, varies with w 0 within a wide spectrum, ranging from 0·28 to 0·60 for the three reconstituted clays investigated. The relationship between void index I v and S* u changes with R* su , and becomes identical to the intrinsic strength line proposed by Chandler when R* su = 0·33. It is also evidenced from the laboratory tests that the value of S* u depends on both the water content and the liquid limit.</description><identifier>ISSN: 0016-8505</identifier><identifier>EISSN: 1751-7656</identifier><identifier>DOI: 10.1680/geot.11.P.114</identifier><identifier>CODEN: GTNQA8</identifier><language>eng</language><publisher>London: Telford</publisher><subject>Clay ; Clays ; Consolidation ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Engineering Sciences ; Exact sciences and technology ; Grain size ; Illite ; Laboratory tests ; Lasers ; Liquid limits ; Liquids ; Mineralogy ; Moisture content ; Polyvinyl chloride ; Shear tests ; Soil sciences ; Strength ; Stress strain curves ; Stresses ; Studies ; Water content ; X-ray diffraction ; Yield stress</subject><ispartof>Géotechnique, 2013-05, Vol.63 (6), p.441-450</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright ICE Publishing 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03</citedby><cites>FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03</cites><orcidid>0000-0003-1886-3923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27216893$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://enpc.hal.science/hal-00926849$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>HONG, Z.-S</creatorcontrib><creatorcontrib>BIAN, X</creatorcontrib><creatorcontrib>CUI, Y.-J</creatorcontrib><creatorcontrib>GAO, Y.-F</creatorcontrib><creatorcontrib>ZENG, L.-L</creatorcontrib><title>Effect of initial water content on undrained shear behaviour of reconstituted clays</title><title>Géotechnique</title><description>Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w 0 on undrained strength behaviour. The values of w 0 were adjusted within the range of 1·0–2·0 times the liquid limit. The predominant clay mineral is identified as illite for the considered clays, based on a semi-quantitative analysis of the X-ray diffraction patterns. The laboratory tests show that the stress–strain curve in terms of deviator stress against axial strain and the effective stress path in terms of deviator stress against effective mean stress are significantly affected by w 0 . The undrained strength ratio R* su , defined as the ratio of the undrained shear strength S* u to the isotropic consolidation stress, varies with w 0 within a wide spectrum, ranging from 0·28 to 0·60 for the three reconstituted clays investigated. The relationship between void index I v and S* u changes with R* su , and becomes identical to the intrinsic strength line proposed by Chandler when R* su = 0·33. It is also evidenced from the laboratory tests that the value of S* u depends on both the water content and the liquid limit.</description><subject>Clay</subject><subject>Clays</subject><subject>Consolidation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Illite</subject><subject>Laboratory tests</subject><subject>Lasers</subject><subject>Liquid limits</subject><subject>Liquids</subject><subject>Mineralogy</subject><subject>Moisture content</subject><subject>Polyvinyl chloride</subject><subject>Shear tests</subject><subject>Soil sciences</subject><subject>Strength</subject><subject>Stress strain curves</subject><subject>Stresses</subject><subject>Studies</subject><subject>Water content</subject><subject>X-ray diffraction</subject><subject>Yield stress</subject><issn>0016-8505</issn><issn>1751-7656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMouH4cvRdE0EPXpEnT5ijiFyy4oJ7DNJ24kZpqkir735tlxYOXGZj5vcc8hpATRudMtvTyFcc0Z2y-zEXskBlralY2spa7ZEYpk2Vb03qfHMT4RmlFVdvMyNONtWhSMdrCeZccDMU3JAyFGX1Cnxe-mHwfwHnsi7hCCEWHK_hy4xQ2qoCZjMmlKWXADLCOR2TPwhDx-Lcfkpfbm-fr-3LxePdwfbUogbd1KisAoTi0QnUomLJYddLWvRCsVrZT0nAljADeSI59B9RWEpqOdz3mLMZSfkgutr4rGPRHcO8Q1noEp--vFnozo1RVMvt_scyeb9mPMH5OGJN-d9HgMIDHcYqa8aaStG1lk9HTf-hbzupzkkwJJUXLmcxUuaVMGGMMaP8uYFRv3qE379CM6WUuIvNnv64QDQw2gDcu_omqpsoixfkPWn2Ksw</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>HONG, Z.-S</creator><creator>BIAN, X</creator><creator>CUI, Y.-J</creator><creator>GAO, Y.-F</creator><creator>ZENG, L.-L</creator><general>Telford</general><general>ICE Publishing</general><general>Thomas Telford</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1886-3923</orcidid></search><sort><creationdate>20130501</creationdate><title>Effect of initial water content on undrained shear behaviour of reconstituted clays</title><author>HONG, Z.-S ; BIAN, X ; CUI, Y.-J ; GAO, Y.-F ; ZENG, L.-L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Clay</topic><topic>Clays</topic><topic>Consolidation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Illite</topic><topic>Laboratory tests</topic><topic>Lasers</topic><topic>Liquid limits</topic><topic>Liquids</topic><topic>Mineralogy</topic><topic>Moisture content</topic><topic>Polyvinyl chloride</topic><topic>Shear tests</topic><topic>Soil sciences</topic><topic>Strength</topic><topic>Stress strain curves</topic><topic>Stresses</topic><topic>Studies</topic><topic>Water content</topic><topic>X-ray diffraction</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HONG, Z.-S</creatorcontrib><creatorcontrib>BIAN, X</creatorcontrib><creatorcontrib>CUI, Y.-J</creatorcontrib><creatorcontrib>GAO, Y.-F</creatorcontrib><creatorcontrib>ZENG, L.-L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Géotechnique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HONG, Z.-S</au><au>BIAN, X</au><au>CUI, Y.-J</au><au>GAO, Y.-F</au><au>ZENG, L.-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of initial water content on undrained shear behaviour of reconstituted clays</atitle><jtitle>Géotechnique</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>63</volume><issue>6</issue><spage>441</spage><epage>450</epage><pages>441-450</pages><issn>0016-8505</issn><eissn>1751-7656</eissn><coden>GTNQA8</coden><abstract>Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w 0 on undrained strength behaviour. The values of w 0 were adjusted within the range of 1·0–2·0 times the liquid limit. The predominant clay mineral is identified as illite for the considered clays, based on a semi-quantitative analysis of the X-ray diffraction patterns. The laboratory tests show that the stress–strain curve in terms of deviator stress against axial strain and the effective stress path in terms of deviator stress against effective mean stress are significantly affected by w 0 . The undrained strength ratio R* su , defined as the ratio of the undrained shear strength S* u to the isotropic consolidation stress, varies with w 0 within a wide spectrum, ranging from 0·28 to 0·60 for the three reconstituted clays investigated. The relationship between void index I v and S* u changes with R* su , and becomes identical to the intrinsic strength line proposed by Chandler when R* su = 0·33. It is also evidenced from the laboratory tests that the value of S* u depends on both the water content and the liquid limit.</abstract><cop>London</cop><pub>Telford</pub><doi>10.1680/geot.11.P.114</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1886-3923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-8505
ispartof Géotechnique, 2013-05, Vol.63 (6), p.441-450
issn 0016-8505
1751-7656
language eng
recordid cdi_hal_primary_oai_HAL_hal_00926849v1
source ICE Virtual Library Journals
subjects Clay
Clays
Consolidation
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
Engineering Sciences
Exact sciences and technology
Grain size
Illite
Laboratory tests
Lasers
Liquid limits
Liquids
Mineralogy
Moisture content
Polyvinyl chloride
Shear tests
Soil sciences
Strength
Stress strain curves
Stresses
Studies
Water content
X-ray diffraction
Yield stress
title Effect of initial water content on undrained shear behaviour of reconstituted clays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20initial%20water%20content%20on%20undrained%20shear%20behaviour%20of%20reconstituted%20clays&rft.jtitle=G%C3%A9otechnique&rft.au=HONG,%20Z.-S&rft.date=2013-05-01&rft.volume=63&rft.issue=6&rft.spage=441&rft.epage=450&rft.pages=441-450&rft.issn=0016-8505&rft.eissn=1751-7656&rft.coden=GTNQA8&rft_id=info:doi/10.1680/geot.11.P.114&rft_dat=%3Cproquest_hal_p%3E1372608867%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349648316&rft_id=info:pmid/&rfr_iscdi=true