Loading…
Effect of initial water content on undrained shear behaviour of reconstituted clays
Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w 0 on undrained strength behaviour. The values of w 0 were adjusted within the range of 1·0–2·0 times the liquid limit. The predominan...
Saved in:
Published in: | Géotechnique 2013-05, Vol.63 (6), p.441-450 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03 |
---|---|
cites | cdi_FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03 |
container_end_page | 450 |
container_issue | 6 |
container_start_page | 441 |
container_title | Géotechnique |
container_volume | 63 |
creator | HONG, Z.-S BIAN, X CUI, Y.-J GAO, Y.-F ZENG, L.-L |
description | Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w
0
on undrained strength behaviour. The values of w
0
were adjusted within the range of 1·0–2·0 times the liquid limit. The predominant clay mineral is identified as illite for the considered clays, based on a semi-quantitative analysis of the X-ray diffraction patterns. The laboratory tests show that the stress–strain curve in terms of deviator stress against axial strain and the effective stress path in terms of deviator stress against effective mean stress are significantly affected by w
0
. The undrained strength ratio R*
su
, defined as the ratio of the undrained shear strength S*
u
to the isotropic consolidation stress, varies with w
0
within a wide spectrum, ranging from 0·28 to 0·60 for the three reconstituted clays investigated. The relationship between void index I
v
and S*
u
changes with R*
su
, and becomes identical to the intrinsic strength line proposed by Chandler when R*
su
= 0·33. It is also evidenced from the laboratory tests that the value of S*
u
depends on both the water content and the liquid limit. |
doi_str_mv | 10.1680/geot.11.P.114 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00926849v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372608867</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMouH4cvRdE0EPXpEnT5ijiFyy4oJ7DNJ24kZpqkir735tlxYOXGZj5vcc8hpATRudMtvTyFcc0Z2y-zEXskBlralY2spa7ZEYpk2Vb03qfHMT4RmlFVdvMyNONtWhSMdrCeZccDMU3JAyFGX1Cnxe-mHwfwHnsi7hCCEWHK_hy4xQ2qoCZjMmlKWXADLCOR2TPwhDx-Lcfkpfbm-fr-3LxePdwfbUogbd1KisAoTi0QnUomLJYddLWvRCsVrZT0nAljADeSI59B9RWEpqOdz3mLMZSfkgutr4rGPRHcO8Q1noEp--vFnozo1RVMvt_scyeb9mPMH5OGJN-d9HgMIDHcYqa8aaStG1lk9HTf-hbzupzkkwJJUXLmcxUuaVMGGMMaP8uYFRv3qE379CM6WUuIvNnv64QDQw2gDcu_omqpsoixfkPWn2Ksw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349648316</pqid></control><display><type>article</type><title>Effect of initial water content on undrained shear behaviour of reconstituted clays</title><source>ICE Virtual Library Journals</source><creator>HONG, Z.-S ; BIAN, X ; CUI, Y.-J ; GAO, Y.-F ; ZENG, L.-L</creator><creatorcontrib>HONG, Z.-S ; BIAN, X ; CUI, Y.-J ; GAO, Y.-F ; ZENG, L.-L</creatorcontrib><description>Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w
0
on undrained strength behaviour. The values of w
0
were adjusted within the range of 1·0–2·0 times the liquid limit. The predominant clay mineral is identified as illite for the considered clays, based on a semi-quantitative analysis of the X-ray diffraction patterns. The laboratory tests show that the stress–strain curve in terms of deviator stress against axial strain and the effective stress path in terms of deviator stress against effective mean stress are significantly affected by w
0
. The undrained strength ratio R*
su
, defined as the ratio of the undrained shear strength S*
u
to the isotropic consolidation stress, varies with w
0
within a wide spectrum, ranging from 0·28 to 0·60 for the three reconstituted clays investigated. The relationship between void index I
v
and S*
u
changes with R*
su
, and becomes identical to the intrinsic strength line proposed by Chandler when R*
su
= 0·33. It is also evidenced from the laboratory tests that the value of S*
u
depends on both the water content and the liquid limit.</description><identifier>ISSN: 0016-8505</identifier><identifier>EISSN: 1751-7656</identifier><identifier>DOI: 10.1680/geot.11.P.114</identifier><identifier>CODEN: GTNQA8</identifier><language>eng</language><publisher>London: Telford</publisher><subject>Clay ; Clays ; Consolidation ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Engineering Sciences ; Exact sciences and technology ; Grain size ; Illite ; Laboratory tests ; Lasers ; Liquid limits ; Liquids ; Mineralogy ; Moisture content ; Polyvinyl chloride ; Shear tests ; Soil sciences ; Strength ; Stress strain curves ; Stresses ; Studies ; Water content ; X-ray diffraction ; Yield stress</subject><ispartof>Géotechnique, 2013-05, Vol.63 (6), p.441-450</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright ICE Publishing 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03</citedby><cites>FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03</cites><orcidid>0000-0003-1886-3923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27216893$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://enpc.hal.science/hal-00926849$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>HONG, Z.-S</creatorcontrib><creatorcontrib>BIAN, X</creatorcontrib><creatorcontrib>CUI, Y.-J</creatorcontrib><creatorcontrib>GAO, Y.-F</creatorcontrib><creatorcontrib>ZENG, L.-L</creatorcontrib><title>Effect of initial water content on undrained shear behaviour of reconstituted clays</title><title>Géotechnique</title><description>Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w
0
on undrained strength behaviour. The values of w
0
were adjusted within the range of 1·0–2·0 times the liquid limit. The predominant clay mineral is identified as illite for the considered clays, based on a semi-quantitative analysis of the X-ray diffraction patterns. The laboratory tests show that the stress–strain curve in terms of deviator stress against axial strain and the effective stress path in terms of deviator stress against effective mean stress are significantly affected by w
0
. The undrained strength ratio R*
su
, defined as the ratio of the undrained shear strength S*
u
to the isotropic consolidation stress, varies with w
0
within a wide spectrum, ranging from 0·28 to 0·60 for the three reconstituted clays investigated. The relationship between void index I
v
and S*
u
changes with R*
su
, and becomes identical to the intrinsic strength line proposed by Chandler when R*
su
= 0·33. It is also evidenced from the laboratory tests that the value of S*
u
depends on both the water content and the liquid limit.</description><subject>Clay</subject><subject>Clays</subject><subject>Consolidation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Illite</subject><subject>Laboratory tests</subject><subject>Lasers</subject><subject>Liquid limits</subject><subject>Liquids</subject><subject>Mineralogy</subject><subject>Moisture content</subject><subject>Polyvinyl chloride</subject><subject>Shear tests</subject><subject>Soil sciences</subject><subject>Strength</subject><subject>Stress strain curves</subject><subject>Stresses</subject><subject>Studies</subject><subject>Water content</subject><subject>X-ray diffraction</subject><subject>Yield stress</subject><issn>0016-8505</issn><issn>1751-7656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMouH4cvRdE0EPXpEnT5ijiFyy4oJ7DNJ24kZpqkir735tlxYOXGZj5vcc8hpATRudMtvTyFcc0Z2y-zEXskBlralY2spa7ZEYpk2Vb03qfHMT4RmlFVdvMyNONtWhSMdrCeZccDMU3JAyFGX1Cnxe-mHwfwHnsi7hCCEWHK_hy4xQ2qoCZjMmlKWXADLCOR2TPwhDx-Lcfkpfbm-fr-3LxePdwfbUogbd1KisAoTi0QnUomLJYddLWvRCsVrZT0nAljADeSI59B9RWEpqOdz3mLMZSfkgutr4rGPRHcO8Q1noEp--vFnozo1RVMvt_scyeb9mPMH5OGJN-d9HgMIDHcYqa8aaStG1lk9HTf-hbzupzkkwJJUXLmcxUuaVMGGMMaP8uYFRv3qE379CM6WUuIvNnv64QDQw2gDcu_omqpsoixfkPWn2Ksw</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>HONG, Z.-S</creator><creator>BIAN, X</creator><creator>CUI, Y.-J</creator><creator>GAO, Y.-F</creator><creator>ZENG, L.-L</creator><general>Telford</general><general>ICE Publishing</general><general>Thomas Telford</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1886-3923</orcidid></search><sort><creationdate>20130501</creationdate><title>Effect of initial water content on undrained shear behaviour of reconstituted clays</title><author>HONG, Z.-S ; BIAN, X ; CUI, Y.-J ; GAO, Y.-F ; ZENG, L.-L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Clay</topic><topic>Clays</topic><topic>Consolidation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Illite</topic><topic>Laboratory tests</topic><topic>Lasers</topic><topic>Liquid limits</topic><topic>Liquids</topic><topic>Mineralogy</topic><topic>Moisture content</topic><topic>Polyvinyl chloride</topic><topic>Shear tests</topic><topic>Soil sciences</topic><topic>Strength</topic><topic>Stress strain curves</topic><topic>Stresses</topic><topic>Studies</topic><topic>Water content</topic><topic>X-ray diffraction</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HONG, Z.-S</creatorcontrib><creatorcontrib>BIAN, X</creatorcontrib><creatorcontrib>CUI, Y.-J</creatorcontrib><creatorcontrib>GAO, Y.-F</creatorcontrib><creatorcontrib>ZENG, L.-L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Géotechnique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HONG, Z.-S</au><au>BIAN, X</au><au>CUI, Y.-J</au><au>GAO, Y.-F</au><au>ZENG, L.-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of initial water content on undrained shear behaviour of reconstituted clays</atitle><jtitle>Géotechnique</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>63</volume><issue>6</issue><spage>441</spage><epage>450</epage><pages>441-450</pages><issn>0016-8505</issn><eissn>1751-7656</eissn><coden>GTNQA8</coden><abstract>Isotropically consolidated undrained triaxial compression shear tests were performed on three reconstituted clays to investigate the effect of initial water content w
0
on undrained strength behaviour. The values of w
0
were adjusted within the range of 1·0–2·0 times the liquid limit. The predominant clay mineral is identified as illite for the considered clays, based on a semi-quantitative analysis of the X-ray diffraction patterns. The laboratory tests show that the stress–strain curve in terms of deviator stress against axial strain and the effective stress path in terms of deviator stress against effective mean stress are significantly affected by w
0
. The undrained strength ratio R*
su
, defined as the ratio of the undrained shear strength S*
u
to the isotropic consolidation stress, varies with w
0
within a wide spectrum, ranging from 0·28 to 0·60 for the three reconstituted clays investigated. The relationship between void index I
v
and S*
u
changes with R*
su
, and becomes identical to the intrinsic strength line proposed by Chandler when R*
su
= 0·33. It is also evidenced from the laboratory tests that the value of S*
u
depends on both the water content and the liquid limit.</abstract><cop>London</cop><pub>Telford</pub><doi>10.1680/geot.11.P.114</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1886-3923</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8505 |
ispartof | Géotechnique, 2013-05, Vol.63 (6), p.441-450 |
issn | 0016-8505 1751-7656 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00926849v1 |
source | ICE Virtual Library Journals |
subjects | Clay Clays Consolidation Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Engineering Sciences Exact sciences and technology Grain size Illite Laboratory tests Lasers Liquid limits Liquids Mineralogy Moisture content Polyvinyl chloride Shear tests Soil sciences Strength Stress strain curves Stresses Studies Water content X-ray diffraction Yield stress |
title | Effect of initial water content on undrained shear behaviour of reconstituted clays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20initial%20water%20content%20on%20undrained%20shear%20behaviour%20of%20reconstituted%20clays&rft.jtitle=G%C3%A9otechnique&rft.au=HONG,%20Z.-S&rft.date=2013-05-01&rft.volume=63&rft.issue=6&rft.spage=441&rft.epage=450&rft.pages=441-450&rft.issn=0016-8505&rft.eissn=1751-7656&rft.coden=GTNQA8&rft_id=info:doi/10.1680/geot.11.P.114&rft_dat=%3Cproquest_hal_p%3E1372608867%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a385t-2aa493a849be419fe2b6f5d44159fb96c394c4a3763edba0f26a7b3bde016cf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349648316&rft_id=info:pmid/&rfr_iscdi=true |