Loading…

Gibbs sampling based distributed OFDMA resource allocation

In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences 2014-04, Vol.57 (4), p.14-25
Main Authors: Garcia, Virgile, Chen, Chung Shue, Zhou, YiQing, Shi, JingLin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33
cites cdi_FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33
container_end_page 25
container_issue 4
container_start_page 14
container_title Science China. Information sciences
container_volume 57
creator Garcia, Virgile
Chen, Chung Shue
Zhou, YiQing
Shi, JingLin
description In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods.
doi_str_mv 10.1007/s11432-014-5076-x
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00927286v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48941478</cqvip_id><sourcerecordid>2918637488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxosoOOb-AG8VL3qIJnlpk3gb023CZBcFbyFp062ja7ekk_nfm9ExwYPv8h7h930v74uia4IfCMb80RPCgCJMGEowT9H-LOoRkUpEJJHnYU45Qxzg8zIaeL_CoQAw5aIXPU1KY3zs9XpTlfUiNtrbPM5L37rS7Nowz8fPb8PYWd_sXGZjXVVNptuyqa-ii0JX3g6OvR99jF_eR1M0m09eR8MZyhiWLTJCEyaSpMDcGOBpXghMLaYCgNOcU8ETThgFZjJmihwKwyTBYPIsTyjPAPrRfee71JXauHKt3bdqdKmmw5k6vGEsafBJv0hg7zp245rtzvpWrUuf2arStW12XpEEsJQyBRrQ2z_oKlxYh0sUlSE94EyIQJGOylzjvbPF6QcEq0P4qgtfhfDVIXy1DxraaXxg64V1v87_iW6Oi5ZNvdgG3WkTE5IRxgX8AMn1j1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918637488</pqid></control><display><type>article</type><title>Gibbs sampling based distributed OFDMA resource allocation</title><source>Springer Link</source><creator>Garcia, Virgile ; Chen, Chung Shue ; Zhou, YiQing ; Shi, JingLin</creator><creatorcontrib>Garcia, Virgile ; Chen, Chung Shue ; Zhou, YiQing ; Shi, JingLin</creatorcontrib><description>In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-014-5076-x</identifier><language>eng</language><publisher>Heidelberg: Science China Press</publisher><subject>Algorithms ; Allocations ; Cellular communication ; China ; Computer Science ; Convergence ; Gibbs抽样 ; Global optimization ; Information Systems and Communication Service ; Networking and Internet Architecture ; NP-hard ; OFDMA ; Optimization ; Research Paper ; Resource allocation ; Sampling ; Strategy ; 分布式优化 ; 吉布斯抽样 ; 收敛速度 ; 资源分配问题 ; 采样算法</subject><ispartof>Science China. Information sciences, 2014-04, Vol.57 (4), p.14-25</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33</citedby><cites>FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00927286$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Virgile</creatorcontrib><creatorcontrib>Chen, Chung Shue</creatorcontrib><creatorcontrib>Zhou, YiQing</creatorcontrib><creatorcontrib>Shi, JingLin</creatorcontrib><title>Gibbs sampling based distributed OFDMA resource allocation</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Cellular communication</subject><subject>China</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Gibbs抽样</subject><subject>Global optimization</subject><subject>Information Systems and Communication Service</subject><subject>Networking and Internet Architecture</subject><subject>NP-hard</subject><subject>OFDMA</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Resource allocation</subject><subject>Sampling</subject><subject>Strategy</subject><subject>分布式优化</subject><subject>吉布斯抽样</subject><subject>收敛速度</subject><subject>资源分配问题</subject><subject>采样算法</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUxosoOOb-AG8VL3qIJnlpk3gb023CZBcFbyFp062ja7ekk_nfm9ExwYPv8h7h930v74uia4IfCMb80RPCgCJMGEowT9H-LOoRkUpEJJHnYU45Qxzg8zIaeL_CoQAw5aIXPU1KY3zs9XpTlfUiNtrbPM5L37rS7Nowz8fPb8PYWd_sXGZjXVVNptuyqa-ii0JX3g6OvR99jF_eR1M0m09eR8MZyhiWLTJCEyaSpMDcGOBpXghMLaYCgNOcU8ETThgFZjJmihwKwyTBYPIsTyjPAPrRfee71JXauHKt3bdqdKmmw5k6vGEsafBJv0hg7zp245rtzvpWrUuf2arStW12XpEEsJQyBRrQ2z_oKlxYh0sUlSE94EyIQJGOylzjvbPF6QcEq0P4qgtfhfDVIXy1DxraaXxg64V1v87_iW6Oi5ZNvdgG3WkTE5IRxgX8AMn1j1k</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Garcia, Virgile</creator><creator>Chen, Chung Shue</creator><creator>Zhou, YiQing</creator><creator>Shi, JingLin</creator><general>Science China Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20140401</creationdate><title>Gibbs sampling based distributed OFDMA resource allocation</title><author>Garcia, Virgile ; Chen, Chung Shue ; Zhou, YiQing ; Shi, JingLin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Cellular communication</topic><topic>China</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Gibbs抽样</topic><topic>Global optimization</topic><topic>Information Systems and Communication Service</topic><topic>Networking and Internet Architecture</topic><topic>NP-hard</topic><topic>OFDMA</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Resource allocation</topic><topic>Sampling</topic><topic>Strategy</topic><topic>分布式优化</topic><topic>吉布斯抽样</topic><topic>收敛速度</topic><topic>资源分配问题</topic><topic>采样算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Virgile</creatorcontrib><creatorcontrib>Chen, Chung Shue</creatorcontrib><creatorcontrib>Zhou, YiQing</creatorcontrib><creatorcontrib>Shi, JingLin</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Virgile</au><au>Chen, Chung Shue</au><au>Zhou, YiQing</au><au>Shi, JingLin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gibbs sampling based distributed OFDMA resource allocation</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>57</volume><issue>4</issue><spage>14</spage><epage>25</epage><pages>14-25</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods.</abstract><cop>Heidelberg</cop><pub>Science China Press</pub><doi>10.1007/s11432-014-5076-x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2014-04, Vol.57 (4), p.14-25
issn 1674-733X
1869-1919
language eng
recordid cdi_hal_primary_oai_HAL_hal_00927286v1
source Springer Link
subjects Algorithms
Allocations
Cellular communication
China
Computer Science
Convergence
Gibbs抽样
Global optimization
Information Systems and Communication Service
Networking and Internet Architecture
NP-hard
OFDMA
Optimization
Research Paper
Resource allocation
Sampling
Strategy
分布式优化
吉布斯抽样
收敛速度
资源分配问题
采样算法
title Gibbs sampling based distributed OFDMA resource allocation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gibbs%20sampling%20based%20distributed%20OFDMA%20resource%20allocation&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Garcia,%20Virgile&rft.date=2014-04-01&rft.volume=57&rft.issue=4&rft.spage=14&rft.epage=25&rft.pages=14-25&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-014-5076-x&rft_dat=%3Cproquest_hal_p%3E2918637488%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918637488&rft_id=info:pmid/&rft_cqvip_id=48941478&rfr_iscdi=true