Loading…
Gibbs sampling based distributed OFDMA resource allocation
In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a...
Saved in:
Published in: | Science China. Information sciences 2014-04, Vol.57 (4), p.14-25 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33 |
container_end_page | 25 |
container_issue | 4 |
container_start_page | 14 |
container_title | Science China. Information sciences |
container_volume | 57 |
creator | Garcia, Virgile Chen, Chung Shue Zhou, YiQing Shi, JingLin |
description | In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods. |
doi_str_mv | 10.1007/s11432-014-5076-x |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00927286v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48941478</cqvip_id><sourcerecordid>2918637488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxosoOOb-AG8VL3qIJnlpk3gb023CZBcFbyFp062ja7ekk_nfm9ExwYPv8h7h930v74uia4IfCMb80RPCgCJMGEowT9H-LOoRkUpEJJHnYU45Qxzg8zIaeL_CoQAw5aIXPU1KY3zs9XpTlfUiNtrbPM5L37rS7Nowz8fPb8PYWd_sXGZjXVVNptuyqa-ii0JX3g6OvR99jF_eR1M0m09eR8MZyhiWLTJCEyaSpMDcGOBpXghMLaYCgNOcU8ETThgFZjJmihwKwyTBYPIsTyjPAPrRfee71JXauHKt3bdqdKmmw5k6vGEsafBJv0hg7zp245rtzvpWrUuf2arStW12XpEEsJQyBRrQ2z_oKlxYh0sUlSE94EyIQJGOylzjvbPF6QcEq0P4qgtfhfDVIXy1DxraaXxg64V1v87_iW6Oi5ZNvdgG3WkTE5IRxgX8AMn1j1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918637488</pqid></control><display><type>article</type><title>Gibbs sampling based distributed OFDMA resource allocation</title><source>Springer Link</source><creator>Garcia, Virgile ; Chen, Chung Shue ; Zhou, YiQing ; Shi, JingLin</creator><creatorcontrib>Garcia, Virgile ; Chen, Chung Shue ; Zhou, YiQing ; Shi, JingLin</creatorcontrib><description>In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-014-5076-x</identifier><language>eng</language><publisher>Heidelberg: Science China Press</publisher><subject>Algorithms ; Allocations ; Cellular communication ; China ; Computer Science ; Convergence ; Gibbs抽样 ; Global optimization ; Information Systems and Communication Service ; Networking and Internet Architecture ; NP-hard ; OFDMA ; Optimization ; Research Paper ; Resource allocation ; Sampling ; Strategy ; 分布式优化 ; 吉布斯抽样 ; 收敛速度 ; 资源分配问题 ; 采样算法</subject><ispartof>Science China. Information sciences, 2014-04, Vol.57 (4), p.14-25</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33</citedby><cites>FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00927286$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Virgile</creatorcontrib><creatorcontrib>Chen, Chung Shue</creatorcontrib><creatorcontrib>Zhou, YiQing</creatorcontrib><creatorcontrib>Shi, JingLin</creatorcontrib><title>Gibbs sampling based distributed OFDMA resource allocation</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Cellular communication</subject><subject>China</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Gibbs抽样</subject><subject>Global optimization</subject><subject>Information Systems and Communication Service</subject><subject>Networking and Internet Architecture</subject><subject>NP-hard</subject><subject>OFDMA</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Resource allocation</subject><subject>Sampling</subject><subject>Strategy</subject><subject>分布式优化</subject><subject>吉布斯抽样</subject><subject>收敛速度</subject><subject>资源分配问题</subject><subject>采样算法</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUxosoOOb-AG8VL3qIJnlpk3gb023CZBcFbyFp062ja7ekk_nfm9ExwYPv8h7h930v74uia4IfCMb80RPCgCJMGEowT9H-LOoRkUpEJJHnYU45Qxzg8zIaeL_CoQAw5aIXPU1KY3zs9XpTlfUiNtrbPM5L37rS7Nowz8fPb8PYWd_sXGZjXVVNptuyqa-ii0JX3g6OvR99jF_eR1M0m09eR8MZyhiWLTJCEyaSpMDcGOBpXghMLaYCgNOcU8ETThgFZjJmihwKwyTBYPIsTyjPAPrRfee71JXauHKt3bdqdKmmw5k6vGEsafBJv0hg7zp245rtzvpWrUuf2arStW12XpEEsJQyBRrQ2z_oKlxYh0sUlSE94EyIQJGOylzjvbPF6QcEq0P4qgtfhfDVIXy1DxraaXxg64V1v87_iW6Oi5ZNvdgG3WkTE5IRxgX8AMn1j1k</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Garcia, Virgile</creator><creator>Chen, Chung Shue</creator><creator>Zhou, YiQing</creator><creator>Shi, JingLin</creator><general>Science China Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20140401</creationdate><title>Gibbs sampling based distributed OFDMA resource allocation</title><author>Garcia, Virgile ; Chen, Chung Shue ; Zhou, YiQing ; Shi, JingLin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Cellular communication</topic><topic>China</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Gibbs抽样</topic><topic>Global optimization</topic><topic>Information Systems and Communication Service</topic><topic>Networking and Internet Architecture</topic><topic>NP-hard</topic><topic>OFDMA</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Resource allocation</topic><topic>Sampling</topic><topic>Strategy</topic><topic>分布式优化</topic><topic>吉布斯抽样</topic><topic>收敛速度</topic><topic>资源分配问题</topic><topic>采样算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Virgile</creatorcontrib><creatorcontrib>Chen, Chung Shue</creatorcontrib><creatorcontrib>Zhou, YiQing</creatorcontrib><creatorcontrib>Shi, JingLin</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Virgile</au><au>Chen, Chung Shue</au><au>Zhou, YiQing</au><au>Shi, JingLin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gibbs sampling based distributed OFDMA resource allocation</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>57</volume><issue>4</issue><spage>14</spage><epage>25</epage><pages>14-25</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>In this article, we present a distributed resource and power allocation scheme for muRip]e-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods.</abstract><cop>Heidelberg</cop><pub>Science China Press</pub><doi>10.1007/s11432-014-5076-x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2014-04, Vol.57 (4), p.14-25 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00927286v1 |
source | Springer Link |
subjects | Algorithms Allocations Cellular communication China Computer Science Convergence Gibbs抽样 Global optimization Information Systems and Communication Service Networking and Internet Architecture NP-hard OFDMA Optimization Research Paper Resource allocation Sampling Strategy 分布式优化 吉布斯抽样 收敛速度 资源分配问题 采样算法 |
title | Gibbs sampling based distributed OFDMA resource allocation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gibbs%20sampling%20based%20distributed%20OFDMA%20resource%20allocation&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Garcia,%20Virgile&rft.date=2014-04-01&rft.volume=57&rft.issue=4&rft.spage=14&rft.epage=25&rft.pages=14-25&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-014-5076-x&rft_dat=%3Cproquest_hal_p%3E2918637488%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-b8a14855f07bb376df802e0283372d72875714234bc4bfd3fb49103bdcd527c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918637488&rft_id=info:pmid/&rft_cqvip_id=48941478&rfr_iscdi=true |