Loading…

Response of soil structure and hydraulic conductivity to reduced tillage and animal manure in a temperate loamy soil

We studied the combined effects of reduced tillage and animal manure on soil structure and hydraulic conductivity (K) in the 2–10 and 12–20 cm layers in a loamy soil. The study was performed at the end of a 7‐yr field trial and included three tillage treatments (mouldboard ploughing until 25 cm dept...

Full description

Saved in:
Bibliographic Details
Published in:Soil use and management 2013-09, Vol.29 (3), p.401-409
Main Authors: Bottinelli, N., Menasseri-Aubry, S., Cluzeau, D., Hallaire, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We studied the combined effects of reduced tillage and animal manure on soil structure and hydraulic conductivity (K) in the 2–10 and 12–20 cm layers in a loamy soil. The study was performed at the end of a 7‐yr field trial and included three tillage treatments (mouldboard ploughing until 25 cm depth: MP, shallow tillage until 12 cm depth: ST, no‐till: NT) and two fertilizer application treatments (mineral or poultry manure). Soil structure was assessed through bulk density (ρb), micromorphological and macropore‐space characteristics. K was measured in situ at −0.6, −0.2 and −0.05 kPa. Untilled layers had a vermicular microstructure resulting from earthworm activity, whereas tilled layers displayed a mixture of crumb and channel microstructures. Untilled layers had the highest ρb and twice as much lower total macroporosity area (pores > 240 μm in equivalent diameter) than tilled layers, reflected by the smallest area of macropores 310–2000 μm in diameter and the smallest area of large complex macropores. K under untilled layers was 12–62% lower than that under tilled layers, but differences were statistically significant only at −0.05 kPa in the 2–10 cm. No significant interaction between tillage and nutrient application treatments was detected for all properties. Compared with mineral fertilizer, poultry manure resulted in a similar ρb but 20% greater total macroporosity area and 30% higher K at −0.2 kPa. Overall, the sensitivity of soil structure and K to poultry manure were relatively small compared with tillage. We suggest that cultivation practices other than animal manure application are needed to improve physical properties under reduced tillage.
ISSN:0266-0032
1475-2743
DOI:10.1111/sum.12049