Loading…

Self-Similar Solutions to a Kinetic Model for Grain Growth

We prove the existence of self-similar solutions to the Fradkov model for two-dimensional grain growth, which consists of an infinite number of nonlocally coupled transport equations for the number densities of grains with given area and number of neighbors (topological class). For the proof we intr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nonlinear science 2012-06, Vol.22 (3), p.399-427
Main Authors: Herrmann, Michael, Laurençot, Philippe, Niethammer, Barbara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-27895dd40065273a12fdbeaf3f5f999c84aab81753b12cac0505843c19dc355d3
cites cdi_FETCH-LOGICAL-c322t-27895dd40065273a12fdbeaf3f5f999c84aab81753b12cac0505843c19dc355d3
container_end_page 427
container_issue 3
container_start_page 399
container_title Journal of nonlinear science
container_volume 22
creator Herrmann, Michael
Laurençot, Philippe
Niethammer, Barbara
description We prove the existence of self-similar solutions to the Fradkov model for two-dimensional grain growth, which consists of an infinite number of nonlocally coupled transport equations for the number densities of grains with given area and number of neighbors (topological class). For the proof we introduce a finite maximal topological class and study an appropriate upwind discretization of the time-dependent problem in self-similar variables. We first show that the resulting finite-dimensional dynamical system admits nontrivial steady states. We then let the discretization parameter tend to zero and prove that the steady states converge to a compactly supported self-similar solution for a Fradkov model with finitely many equations. In a third step we let the maximal topology class tend to infinity and obtain self-similar solutions to the original system that decay exponentially. Finally, we use the upwind discretization to compute self-similar solutions numerically.
doi_str_mv 10.1007/s00332-011-9122-1
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00934726v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00934726v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-27895dd40065273a12fdbeaf3f5f999c84aab81753b12cac0505843c19dc355d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEuXnAbj5ysGwa8d1zK2qoEUUcSicLdeJqas0RnYK4u1JFMSRy640mm-1M4RcIdwggLrNAEJwBohMI-cMj8gEi17BYqqOyQS0KFmpVXFKznLeAaCSgk_I3bpuPFuHfWhsouvYHLoQ20y7SC19Cm3dBUefY1U31MdEF8mGtp_xq9tekBNvm1xf_u5z8vZw_zpfstXL4nE-WzEnOO8YV6WWVVUATCVXwiL31aa2XnjptdauLKzdlMM7G-TOOpAgy0I41JUTUlbinFyPd7e2MR8p7G36NtEGs5ytzKBBH65QfPqJvRdHr0sx51T7PwDBDEWZsSjTF2WGoszA8JHJvbd9r5PZxUNq-0j_QD8Rx2jO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-Similar Solutions to a Kinetic Model for Grain Growth</title><source>Springer Link</source><creator>Herrmann, Michael ; Laurençot, Philippe ; Niethammer, Barbara</creator><creatorcontrib>Herrmann, Michael ; Laurençot, Philippe ; Niethammer, Barbara</creatorcontrib><description>We prove the existence of self-similar solutions to the Fradkov model for two-dimensional grain growth, which consists of an infinite number of nonlocally coupled transport equations for the number densities of grains with given area and number of neighbors (topological class). For the proof we introduce a finite maximal topological class and study an appropriate upwind discretization of the time-dependent problem in self-similar variables. We first show that the resulting finite-dimensional dynamical system admits nontrivial steady states. We then let the discretization parameter tend to zero and prove that the steady states converge to a compactly supported self-similar solution for a Fradkov model with finitely many equations. In a third step we let the maximal topology class tend to infinity and obtain self-similar solutions to the original system that decay exponentially. Finally, we use the upwind discretization to compute self-similar solutions numerically.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-011-9122-1</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Analysis ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Journal of nonlinear science, 2012-06, Vol.22 (3), p.399-427</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-27895dd40065273a12fdbeaf3f5f999c84aab81753b12cac0505843c19dc355d3</citedby><cites>FETCH-LOGICAL-c322t-27895dd40065273a12fdbeaf3f5f999c84aab81753b12cac0505843c19dc355d3</cites><orcidid>0000-0003-3091-8085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00934726$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrmann, Michael</creatorcontrib><creatorcontrib>Laurençot, Philippe</creatorcontrib><creatorcontrib>Niethammer, Barbara</creatorcontrib><title>Self-Similar Solutions to a Kinetic Model for Grain Growth</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>We prove the existence of self-similar solutions to the Fradkov model for two-dimensional grain growth, which consists of an infinite number of nonlocally coupled transport equations for the number densities of grains with given area and number of neighbors (topological class). For the proof we introduce a finite maximal topological class and study an appropriate upwind discretization of the time-dependent problem in self-similar variables. We first show that the resulting finite-dimensional dynamical system admits nontrivial steady states. We then let the discretization parameter tend to zero and prove that the steady states converge to a compactly supported self-similar solution for a Fradkov model with finitely many equations. In a third step we let the maximal topology class tend to infinity and obtain self-similar solutions to the original system that decay exponentially. Finally, we use the upwind discretization to compute self-similar solutions numerically.</description><subject>Analysis</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEuXnAbj5ysGwa8d1zK2qoEUUcSicLdeJqas0RnYK4u1JFMSRy640mm-1M4RcIdwggLrNAEJwBohMI-cMj8gEi17BYqqOyQS0KFmpVXFKznLeAaCSgk_I3bpuPFuHfWhsouvYHLoQ20y7SC19Cm3dBUefY1U31MdEF8mGtp_xq9tekBNvm1xf_u5z8vZw_zpfstXL4nE-WzEnOO8YV6WWVVUATCVXwiL31aa2XnjptdauLKzdlMM7G-TOOpAgy0I41JUTUlbinFyPd7e2MR8p7G36NtEGs5ytzKBBH65QfPqJvRdHr0sx51T7PwDBDEWZsSjTF2WGoszA8JHJvbd9r5PZxUNq-0j_QD8Rx2jO</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Herrmann, Michael</creator><creator>Laurençot, Philippe</creator><creator>Niethammer, Barbara</creator><general>Springer-Verlag</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3091-8085</orcidid></search><sort><creationdate>20120601</creationdate><title>Self-Similar Solutions to a Kinetic Model for Grain Growth</title><author>Herrmann, Michael ; Laurençot, Philippe ; Niethammer, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-27895dd40065273a12fdbeaf3f5f999c84aab81753b12cac0505843c19dc355d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrmann, Michael</creatorcontrib><creatorcontrib>Laurençot, Philippe</creatorcontrib><creatorcontrib>Niethammer, Barbara</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrmann, Michael</au><au>Laurençot, Philippe</au><au>Niethammer, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Similar Solutions to a Kinetic Model for Grain Growth</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>399</spage><epage>427</epage><pages>399-427</pages><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>We prove the existence of self-similar solutions to the Fradkov model for two-dimensional grain growth, which consists of an infinite number of nonlocally coupled transport equations for the number densities of grains with given area and number of neighbors (topological class). For the proof we introduce a finite maximal topological class and study an appropriate upwind discretization of the time-dependent problem in self-similar variables. We first show that the resulting finite-dimensional dynamical system admits nontrivial steady states. We then let the discretization parameter tend to zero and prove that the steady states converge to a compactly supported self-similar solution for a Fradkov model with finitely many equations. In a third step we let the maximal topology class tend to infinity and obtain self-similar solutions to the original system that decay exponentially. Finally, we use the upwind discretization to compute self-similar solutions numerically.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00332-011-9122-1</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-3091-8085</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0938-8974
ispartof Journal of nonlinear science, 2012-06, Vol.22 (3), p.399-427
issn 0938-8974
1432-1467
language eng
recordid cdi_hal_primary_oai_HAL_hal_00934726v1
source Springer Link
subjects Analysis
Classical Mechanics
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title Self-Similar Solutions to a Kinetic Model for Grain Growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Similar%20Solutions%20to%20a%20Kinetic%20Model%20for%20Grain%20Growth&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Herrmann,%20Michael&rft.date=2012-06-01&rft.volume=22&rft.issue=3&rft.spage=399&rft.epage=427&rft.pages=399-427&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-011-9122-1&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00934726v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-27895dd40065273a12fdbeaf3f5f999c84aab81753b12cac0505843c19dc355d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true