Loading…

Annealing twin development during recrystallization and grain growth in pure nickel

A 99.995% pure Ni sample, compressed to 25%, was annealed in a SEM chamber and changes in the density of annealing twins were monitored in situ during recrystallization and grain growth. In addition to average microstructural measurements, the evolution of individual grains was also observed. Both t...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2014-03, Vol.597, p.295-303
Main Authors: Jin, Y., Lin, B., Bernacki, M., Rohrer, G.S., Rollett, A.D., Bozzolo, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 99.995% pure Ni sample, compressed to 25%, was annealed in a SEM chamber and changes in the density of annealing twins were monitored in situ during recrystallization and grain growth. In addition to average microstructural measurements, the evolution of individual grains was also observed. Both the average annealing twin density in the recrystallized domain and the annealing twin density per grain increased during recrystallization. The rate of increase in twin density correlates with the velocity of the recrystallization front. During grain growth, however, the average annealing twin density decreased. The in situ EBSD observations showed both the formation of new twins and the extension of existing twins during annealing. The observations reported here suggest that the existing models for annealing twin formation are incomplete.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2014.01.018