Loading…

Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires

We study numerically the effect of periodicity on the plasmon-assisted scattering and absorption of visible light by infinite and finite gratings of circular silver nanowires. The infinite grating is a convenient object of analysis because of the possibility to reduce the scattering problem to one p...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2011-10, Vol.19 (22), p.22176-22190
Main Authors: Natarov, Denys M, Byelobrov, Volodymyr O, Sauleau, Ronan, Benson, Trevor M, Nosich, Alexander I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study numerically the effect of periodicity on the plasmon-assisted scattering and absorption of visible light by infinite and finite gratings of circular silver nanowires. The infinite grating is a convenient object of analysis because of the possibility to reduce the scattering problem to one period. We use the well-established method of partial separation of variables however make an important improvement by casting the resulting matrix equation to the Fredholm second-kind type, which guarantees convergence. If the silver wires have sub-wavelength radii, then two types of resonances co-exist and may lead to enhanced reflection and absorption: the plasmon-type and the grating-type. Each type is caused by different complex poles of the field function. The low-Q plasmon poles cluster near the wavelength where dielectric function equals -1. The grating-type poles make multiplets located in close proximity of Rayleigh wavelengths, tending to them if the wires get thinner. They have high Q-factors and, if excited, display intensive near-field patterns. A similar interplay between the two types of resonances takes place for finite gratings of silver wires, the sharpness of the grating-type peak getting greater for longer gratings. By tuning carefully the grating period, one can bring together two resonances and enhance the resonant scattering of light per wire by several times.
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.19.022176