Loading…

Performance of time reversal precoding technique for MISO-OFDM systems

Time reversal (TR) is considered as a promising technique for green and multi-user communications thanks to its time and space focusing properties. TR can be viewed as a precoding scheme which can be combined with orthogonal frequency division multiplexing (OFDM) and easily carried out in a multiple...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on wireless communications and networking 2013-11, Vol.2013 (1), p.260-260, Article 260
Main Authors: Dubois, Thierry, Hélard, Maryline, Crussière, Matthieu, Germond, Cécile
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time reversal (TR) is considered as a promising technique for green and multi-user communications thanks to its time and space focusing properties. TR can be viewed as a precoding scheme which can be combined with orthogonal frequency division multiplexing (OFDM) and easily carried out in a multiple transmit antenna context. This paper analyzes the performance of TR for a multiple-input single-output (MISO) OFDM system and provides a comparison with maximum ratio transmission (MRT) and equal gain transmission (EGT) precoding techniques. The analytical performance of the three precoding techniques is derived by computing the capacity and the bit error rate (BER) as a function of the transmit signal-to-noise ratio (SNR). First, the capacity analysis highlights the ability of the TR system to provide higher bit rates than the MRT system at low SNRs, while the capacity of the MRT system is the highest at high SNRs. From the obtained BER analytical expressions, the diversity exploitation of each system is discussed. In particular, it is shown that the TR system only exploits half the available diversity, while the systems using EGT or MRT exploit the full diversity. Hence, contrary to what is expected from the theoretical capacity analysis, the TR system is shown to underperform the other precoding schemes in terms of BER. To overcome such a drawback, the combination of TR with classical adaptive modulation techniques is studied, allowing the achievable throughput to be increased without destroying the focusing properties of TR. It is then observed that TR takes advantage of adaptive modulations and outperforms the other schemes at low SNRs. In this study, analytical results and closed-form expressions of capacity and BER performance are provided and confirmed through Monte Carlo simulations.
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/1687-1499-2013-260