Loading…

Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H2O2 based deposition route

Recent results have revealed that the low deposition time issue of chemical bath deposited (CBD) Zn(S,O,OH) buffer layer used in Cu(In,Ga)Se2 (CIGSe) solar cells could be resolved using H2O2 as an additive in the chemical bath solution. Although the use of this additive does not hinder the electrica...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2013-05, Vol.535, p.171-174
Main Authors: Buffière, M., Gautron, E., Hildebrandt, T., Harel, S., Guillot-Deudon, C., Arzel, L., Naghavi, N., Barreau, N., Kessler, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-2de3b3fea120917c81cb0576e0d13ee20b6a8ebc640945ccda45442015c838b13
cites cdi_FETCH-LOGICAL-c402t-2de3b3fea120917c81cb0576e0d13ee20b6a8ebc640945ccda45442015c838b13
container_end_page 174
container_issue
container_start_page 171
container_title Thin solid films
container_volume 535
creator Buffière, M.
Gautron, E.
Hildebrandt, T.
Harel, S.
Guillot-Deudon, C.
Arzel, L.
Naghavi, N.
Barreau, N.
Kessler, J.
description Recent results have revealed that the low deposition time issue of chemical bath deposited (CBD) Zn(S,O,OH) buffer layer used in Cu(In,Ga)Se2 (CIGSe) solar cells could be resolved using H2O2 as an additive in the chemical bath solution. Although the use of this additive does not hinder the electrical properties of the resulting Zn(S,O,OH)-buffered CIGSe solar cells, the impact of H2O2 on the Zn(S,O,OH) properties remains unclear. The present contribution aims at determining the chemical composition and the microstructure of Zn(S,O,OH) film deposited by CBD using the alternative deposition bath containing the standard zinc sulfate, thiourea, ammonia but also H2O2 additive. Both X-ray photoemission spectroscopy and energy dispersive X-ray spectroscopy analyses reveal higher sulfur content in alternatively deposited Zn(S,O,OH), since the first step growth of the layer. According to transmission electron microscopy analyses, another consequence of the higher deposition rate achieved when adding H2O2 in the bath is the modification of the absorber/buffer interface. This could be explained by the enhancement of the cluster growth mechanism of the layer. ► The Zn(S,O,OH) layer composition can vary with the chemical bath process used. ► The alternative process leads to a faster incorporation of sulfur in the layer. ► No ZnS epitaxial layer has been found at absorber/alternative buffer interface. ► The use of H2O2 enhances the cluster-by-cluster growth mechanism.
doi_str_mv 10.1016/j.tsf.2012.10.029
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00961218v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609012012990</els_id><sourcerecordid>S0040609012012990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2de3b3fea120917c81cb0576e0d13ee20b6a8ebc640945ccda45442015c838b13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFsuggW3TrLb_cBTKWqFQg_qxUvIJrOast2UJFvx35ul0qOnTIbnnWEeQq4ZTBmw_H4zDb6ZcmA8_qfAqxMyYmVRJbxI2SkZAWSQ5FDBObnwfgMQSZ6OSFjY7c56E4ztqOw09cH1KvROtrHs9Q-1DfW27Qcg2Tmr0HvU9KO7fb1b362XExq-TEcb0249_XT2u6O9N90nXfI1p7UcYI3HFc72AS_JWSNbj1d_75i8Pz2-LZbJav38spivEpUBDwnXmNZpg5JxqFihSqZqmBU5gmYpIoc6lyXWKs-gymZKaZnNsiw6mKkyLWuWjsnkMPdLtmLnzFa6H2GlEcv5Sgw9gCpnnJX7gWUHVjnrvcPmGGAgBsViI6JiMSgeWlFxzNwcMjvplWwbJztl_DHIi6woWJVH7uHAYTx2b9AJrwx2CrVxqILQ1vyz5ReOU5Em</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H2O2 based deposition route</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Buffière, M. ; Gautron, E. ; Hildebrandt, T. ; Harel, S. ; Guillot-Deudon, C. ; Arzel, L. ; Naghavi, N. ; Barreau, N. ; Kessler, J.</creator><creatorcontrib>Buffière, M. ; Gautron, E. ; Hildebrandt, T. ; Harel, S. ; Guillot-Deudon, C. ; Arzel, L. ; Naghavi, N. ; Barreau, N. ; Kessler, J.</creatorcontrib><description>Recent results have revealed that the low deposition time issue of chemical bath deposited (CBD) Zn(S,O,OH) buffer layer used in Cu(In,Ga)Se2 (CIGSe) solar cells could be resolved using H2O2 as an additive in the chemical bath solution. Although the use of this additive does not hinder the electrical properties of the resulting Zn(S,O,OH)-buffered CIGSe solar cells, the impact of H2O2 on the Zn(S,O,OH) properties remains unclear. The present contribution aims at determining the chemical composition and the microstructure of Zn(S,O,OH) film deposited by CBD using the alternative deposition bath containing the standard zinc sulfate, thiourea, ammonia but also H2O2 additive. Both X-ray photoemission spectroscopy and energy dispersive X-ray spectroscopy analyses reveal higher sulfur content in alternatively deposited Zn(S,O,OH), since the first step growth of the layer. According to transmission electron microscopy analyses, another consequence of the higher deposition rate achieved when adding H2O2 in the bath is the modification of the absorber/buffer interface. This could be explained by the enhancement of the cluster growth mechanism of the layer. ► The Zn(S,O,OH) layer composition can vary with the chemical bath process used. ► The alternative process leads to a faster incorporation of sulfur in the layer. ► No ZnS epitaxial layer has been found at absorber/alternative buffer interface. ► The use of H2O2 enhances the cluster-by-cluster growth mechanism.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2012.10.029</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Buffer layer ; CIGSe ; Composition and phase identification ; Condensed Matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport phenomena in thin films and low-dimensional structures ; Energy ; Exact sciences and technology ; Materials Science ; Natural energy ; Photovoltaic conversion ; Physics ; Solar cell ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solution processed Zn(S,O,OH) ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology</subject><ispartof>Thin solid films, 2013-05, Vol.535, p.171-174</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2de3b3fea120917c81cb0576e0d13ee20b6a8ebc640945ccda45442015c838b13</citedby><cites>FETCH-LOGICAL-c402t-2de3b3fea120917c81cb0576e0d13ee20b6a8ebc640945ccda45442015c838b13</cites><orcidid>0000-0002-1427-9378 ; 0000-0002-8423-153X ; 0000-0002-1669-7143 ; 0000-0003-2645-269X ; 0000-0002-6045-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27477196$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00961218$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Buffière, M.</creatorcontrib><creatorcontrib>Gautron, E.</creatorcontrib><creatorcontrib>Hildebrandt, T.</creatorcontrib><creatorcontrib>Harel, S.</creatorcontrib><creatorcontrib>Guillot-Deudon, C.</creatorcontrib><creatorcontrib>Arzel, L.</creatorcontrib><creatorcontrib>Naghavi, N.</creatorcontrib><creatorcontrib>Barreau, N.</creatorcontrib><creatorcontrib>Kessler, J.</creatorcontrib><title>Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H2O2 based deposition route</title><title>Thin solid films</title><description>Recent results have revealed that the low deposition time issue of chemical bath deposited (CBD) Zn(S,O,OH) buffer layer used in Cu(In,Ga)Se2 (CIGSe) solar cells could be resolved using H2O2 as an additive in the chemical bath solution. Although the use of this additive does not hinder the electrical properties of the resulting Zn(S,O,OH)-buffered CIGSe solar cells, the impact of H2O2 on the Zn(S,O,OH) properties remains unclear. The present contribution aims at determining the chemical composition and the microstructure of Zn(S,O,OH) film deposited by CBD using the alternative deposition bath containing the standard zinc sulfate, thiourea, ammonia but also H2O2 additive. Both X-ray photoemission spectroscopy and energy dispersive X-ray spectroscopy analyses reveal higher sulfur content in alternatively deposited Zn(S,O,OH), since the first step growth of the layer. According to transmission electron microscopy analyses, another consequence of the higher deposition rate achieved when adding H2O2 in the bath is the modification of the absorber/buffer interface. This could be explained by the enhancement of the cluster growth mechanism of the layer. ► The Zn(S,O,OH) layer composition can vary with the chemical bath process used. ► The alternative process leads to a faster incorporation of sulfur in the layer. ► No ZnS epitaxial layer has been found at absorber/alternative buffer interface. ► The use of H2O2 enhances the cluster-by-cluster growth mechanism.</description><subject>Applied sciences</subject><subject>Buffer layer</subject><subject>CIGSe</subject><subject>Composition and phase identification</subject><subject>Condensed Matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cell</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solution processed Zn(S,O,OH)</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFsuggW3TrLb_cBTKWqFQg_qxUvIJrOast2UJFvx35ul0qOnTIbnnWEeQq4ZTBmw_H4zDb6ZcmA8_qfAqxMyYmVRJbxI2SkZAWSQ5FDBObnwfgMQSZ6OSFjY7c56E4ztqOw09cH1KvROtrHs9Q-1DfW27Qcg2Tmr0HvU9KO7fb1b362XExq-TEcb0249_XT2u6O9N90nXfI1p7UcYI3HFc72AS_JWSNbj1d_75i8Pz2-LZbJav38spivEpUBDwnXmNZpg5JxqFihSqZqmBU5gmYpIoc6lyXWKs-gymZKaZnNsiw6mKkyLWuWjsnkMPdLtmLnzFa6H2GlEcv5Sgw9gCpnnJX7gWUHVjnrvcPmGGAgBsViI6JiMSgeWlFxzNwcMjvplWwbJztl_DHIi6woWJVH7uHAYTx2b9AJrwx2CrVxqILQ1vyz5ReOU5Em</recordid><startdate>20130515</startdate><enddate>20130515</enddate><creator>Buffière, M.</creator><creator>Gautron, E.</creator><creator>Hildebrandt, T.</creator><creator>Harel, S.</creator><creator>Guillot-Deudon, C.</creator><creator>Arzel, L.</creator><creator>Naghavi, N.</creator><creator>Barreau, N.</creator><creator>Kessler, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1427-9378</orcidid><orcidid>https://orcid.org/0000-0002-8423-153X</orcidid><orcidid>https://orcid.org/0000-0002-1669-7143</orcidid><orcidid>https://orcid.org/0000-0003-2645-269X</orcidid><orcidid>https://orcid.org/0000-0002-6045-5096</orcidid></search><sort><creationdate>20130515</creationdate><title>Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H2O2 based deposition route</title><author>Buffière, M. ; Gautron, E. ; Hildebrandt, T. ; Harel, S. ; Guillot-Deudon, C. ; Arzel, L. ; Naghavi, N. ; Barreau, N. ; Kessler, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2de3b3fea120917c81cb0576e0d13ee20b6a8ebc640945ccda45442015c838b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Buffer layer</topic><topic>CIGSe</topic><topic>Composition and phase identification</topic><topic>Condensed Matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cell</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solution processed Zn(S,O,OH)</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buffière, M.</creatorcontrib><creatorcontrib>Gautron, E.</creatorcontrib><creatorcontrib>Hildebrandt, T.</creatorcontrib><creatorcontrib>Harel, S.</creatorcontrib><creatorcontrib>Guillot-Deudon, C.</creatorcontrib><creatorcontrib>Arzel, L.</creatorcontrib><creatorcontrib>Naghavi, N.</creatorcontrib><creatorcontrib>Barreau, N.</creatorcontrib><creatorcontrib>Kessler, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buffière, M.</au><au>Gautron, E.</au><au>Hildebrandt, T.</au><au>Harel, S.</au><au>Guillot-Deudon, C.</au><au>Arzel, L.</au><au>Naghavi, N.</au><au>Barreau, N.</au><au>Kessler, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H2O2 based deposition route</atitle><jtitle>Thin solid films</jtitle><date>2013-05-15</date><risdate>2013</risdate><volume>535</volume><spage>171</spage><epage>174</epage><pages>171-174</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Recent results have revealed that the low deposition time issue of chemical bath deposited (CBD) Zn(S,O,OH) buffer layer used in Cu(In,Ga)Se2 (CIGSe) solar cells could be resolved using H2O2 as an additive in the chemical bath solution. Although the use of this additive does not hinder the electrical properties of the resulting Zn(S,O,OH)-buffered CIGSe solar cells, the impact of H2O2 on the Zn(S,O,OH) properties remains unclear. The present contribution aims at determining the chemical composition and the microstructure of Zn(S,O,OH) film deposited by CBD using the alternative deposition bath containing the standard zinc sulfate, thiourea, ammonia but also H2O2 additive. Both X-ray photoemission spectroscopy and energy dispersive X-ray spectroscopy analyses reveal higher sulfur content in alternatively deposited Zn(S,O,OH), since the first step growth of the layer. According to transmission electron microscopy analyses, another consequence of the higher deposition rate achieved when adding H2O2 in the bath is the modification of the absorber/buffer interface. This could be explained by the enhancement of the cluster growth mechanism of the layer. ► The Zn(S,O,OH) layer composition can vary with the chemical bath process used. ► The alternative process leads to a faster incorporation of sulfur in the layer. ► No ZnS epitaxial layer has been found at absorber/alternative buffer interface. ► The use of H2O2 enhances the cluster-by-cluster growth mechanism.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2012.10.029</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1427-9378</orcidid><orcidid>https://orcid.org/0000-0002-8423-153X</orcidid><orcidid>https://orcid.org/0000-0002-1669-7143</orcidid><orcidid>https://orcid.org/0000-0003-2645-269X</orcidid><orcidid>https://orcid.org/0000-0002-6045-5096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2013-05, Vol.535, p.171-174
issn 0040-6090
1879-2731
language eng
recordid cdi_hal_primary_oai_HAL_hal_00961218v1
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Buffer layer
CIGSe
Composition and phase identification
Condensed Matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport phenomena in thin films and low-dimensional structures
Energy
Exact sciences and technology
Materials Science
Natural energy
Photovoltaic conversion
Physics
Solar cell
Solar cells. Photoelectrochemical cells
Solar energy
Solution processed Zn(S,O,OH)
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
title Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H2O2 based deposition route
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20and%20structural%20study%20of%20solution-processed%20Zn(S,O,OH)%20thin%20films%20grown%20using%20H2O2%20based%20deposition%20route&rft.jtitle=Thin%20solid%20films&rft.au=Buffi%C3%A8re,%20M.&rft.date=2013-05-15&rft.volume=535&rft.spage=171&rft.epage=174&rft.pages=171-174&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2012.10.029&rft_dat=%3Celsevier_hal_p%3ES0040609012012990%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-2de3b3fea120917c81cb0576e0d13ee20b6a8ebc640945ccda45442015c838b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true