Loading…
X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components
Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be devel...
Saved in:
Published in: | Chemphyschem 2014-04, Vol.15 (5), p.894-904 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933 |
---|---|
cites | cdi_FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933 |
container_end_page | 904 |
container_issue | 5 |
container_start_page | 894 |
container_title | Chemphyschem |
container_volume | 15 |
creator | Patel, Manu U. M. Arčon, Iztok Aquilanti, Giuliana Stievano, Lorenzo Mali, Gregor Dominko, Robert |
description | Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries.
Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation. |
doi_str_mv | 10.1002/cphc.201300972 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00969129v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512555197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933</originalsourceid><addsrcrecordid>eNqF0c1v0zAYB-AIgdgYXDkiSwgJDin-iOvk2FXbSlUKoiB2sxzn9eqRxsUfg_LXk9BSEBdOtuznff3xy7KnBI8IxvS13q71iGLCMK4EvZedkoJVuRgX5P5hXlDGT7JHIdxijEssyMPshBZFrzE-zX5c517t0KQOzm-jdR1agvL5RXMDaBV90jF5QKpr0DLptt9Cb9VNB9Fq9AGC61SnB5iaHXIGxTWghY1rmzb5KrUmeXSuYgS_-9XCxoCmbrN1HXQxPM4eGNUGeHIYz7JPlxcfp7N88e7qzXSyyPW4KGmu9dgIXteNrhtRG0OFppoybQCUKqhihlaVBtyQBkpaGMNqZrhpQDBueMXYWfZq33etWrn1dqP8Tjpl5WyykMNa_3XjitDqjvT25d5uvfuaIES5sUFD26oOXAqScEI556QSPX3-D711yXf9SwZFOC8ZGQ4f7ZX2LgQP5ngDguWQoBwSlMcE-4Jnh7ap3kBz5L8j68GLA1BBq9b4PgIb_riSVZTisnfV3n2zLez-c6ycvp9N_75Evq-1IcL3Y63yX-RYMMHl5-WVXBRzQefXc7liPwFmSMR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511558313</pqid></control><display><type>article</type><title>X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Patel, Manu U. M. ; Arčon, Iztok ; Aquilanti, Giuliana ; Stievano, Lorenzo ; Mali, Gregor ; Dominko, Robert</creator><creatorcontrib>Patel, Manu U. M. ; Arčon, Iztok ; Aquilanti, Giuliana ; Stievano, Lorenzo ; Mali, Gregor ; Dominko, Robert</creatorcontrib><description>Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries.
Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201300972</identifier><identifier>PMID: 24497200</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; batteries ; Chemical Sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; lithium ; Material chemistry ; NMR ; nmr spectroscopy ; Nuclear magnetic resonance ; polysulfides ; Spectrum analysis ; x-ray absorption spectroscopy ; X-rays</subject><ispartof>Chemphyschem, 2014-04, Vol.15 (5), p.894-904</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933</citedby><cites>FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933</cites><orcidid>0000-0001-8548-0231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28392208$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24497200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00969129$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Manu U. M.</creatorcontrib><creatorcontrib>Arčon, Iztok</creatorcontrib><creatorcontrib>Aquilanti, Giuliana</creatorcontrib><creatorcontrib>Stievano, Lorenzo</creatorcontrib><creatorcontrib>Mali, Gregor</creatorcontrib><creatorcontrib>Dominko, Robert</creatorcontrib><title>X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries.
Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation.</description><subject>Applied sciences</subject><subject>batteries</subject><subject>Chemical Sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>lithium</subject><subject>Material chemistry</subject><subject>NMR</subject><subject>nmr spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>polysulfides</subject><subject>Spectrum analysis</subject><subject>x-ray absorption spectroscopy</subject><subject>X-rays</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0c1v0zAYB-AIgdgYXDkiSwgJDin-iOvk2FXbSlUKoiB2sxzn9eqRxsUfg_LXk9BSEBdOtuznff3xy7KnBI8IxvS13q71iGLCMK4EvZedkoJVuRgX5P5hXlDGT7JHIdxijEssyMPshBZFrzE-zX5c517t0KQOzm-jdR1agvL5RXMDaBV90jF5QKpr0DLptt9Cb9VNB9Fq9AGC61SnB5iaHXIGxTWghY1rmzb5KrUmeXSuYgS_-9XCxoCmbrN1HXQxPM4eGNUGeHIYz7JPlxcfp7N88e7qzXSyyPW4KGmu9dgIXteNrhtRG0OFppoybQCUKqhihlaVBtyQBkpaGMNqZrhpQDBueMXYWfZq33etWrn1dqP8Tjpl5WyykMNa_3XjitDqjvT25d5uvfuaIES5sUFD26oOXAqScEI556QSPX3-D711yXf9SwZFOC8ZGQ4f7ZX2LgQP5ngDguWQoBwSlMcE-4Jnh7ap3kBz5L8j68GLA1BBq9b4PgIb_riSVZTisnfV3n2zLez-c6ycvp9N_75Evq-1IcL3Y63yX-RYMMHl5-WVXBRzQefXc7liPwFmSMR8</recordid><startdate>20140404</startdate><enddate>20140404</enddate><creator>Patel, Manu U. M.</creator><creator>Arčon, Iztok</creator><creator>Aquilanti, Giuliana</creator><creator>Stievano, Lorenzo</creator><creator>Mali, Gregor</creator><creator>Dominko, Robert</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8548-0231</orcidid></search><sort><creationdate>20140404</creationdate><title>X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components</title><author>Patel, Manu U. M. ; Arčon, Iztok ; Aquilanti, Giuliana ; Stievano, Lorenzo ; Mali, Gregor ; Dominko, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>batteries</topic><topic>Chemical Sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>lithium</topic><topic>Material chemistry</topic><topic>NMR</topic><topic>nmr spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>polysulfides</topic><topic>Spectrum analysis</topic><topic>x-ray absorption spectroscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Manu U. M.</creatorcontrib><creatorcontrib>Arčon, Iztok</creatorcontrib><creatorcontrib>Aquilanti, Giuliana</creatorcontrib><creatorcontrib>Stievano, Lorenzo</creatorcontrib><creatorcontrib>Mali, Gregor</creatorcontrib><creatorcontrib>Dominko, Robert</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Manu U. M.</au><au>Arčon, Iztok</au><au>Aquilanti, Giuliana</au><au>Stievano, Lorenzo</au><au>Mali, Gregor</au><au>Dominko, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2014-04-04</date><risdate>2014</risdate><volume>15</volume><issue>5</issue><spage>894</spage><epage>904</epage><pages>894-904</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries.
Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24497200</pmid><doi>10.1002/cphc.201300972</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8548-0231</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2014-04, Vol.15 (5), p.894-904 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00969129v1 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences batteries Chemical Sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology lithium Material chemistry NMR nmr spectroscopy Nuclear magnetic resonance polysulfides Spectrum analysis x-ray absorption spectroscopy X-rays |
title | X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20Absorption%20Near-Edge%20Structure%20and%20Nuclear%20Magnetic%20Resonance%20Study%20of%20the%20Lithium-Sulfur%20Battery%20and%20its%20Components&rft.jtitle=Chemphyschem&rft.au=Patel,%20Manu%20U.%20M.&rft.date=2014-04-04&rft.volume=15&rft.issue=5&rft.spage=894&rft.epage=904&rft.pages=894-904&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201300972&rft_dat=%3Cproquest_hal_p%3E1512555197%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1511558313&rft_id=info:pmid/24497200&rfr_iscdi=true |