Loading…

X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components

Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be devel...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2014-04, Vol.15 (5), p.894-904
Main Authors: Patel, Manu U. M., Arčon, Iztok, Aquilanti, Giuliana, Stievano, Lorenzo, Mali, Gregor, Dominko, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933
cites cdi_FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933
container_end_page 904
container_issue 5
container_start_page 894
container_title Chemphyschem
container_volume 15
creator Patel, Manu U. M.
Arčon, Iztok
Aquilanti, Giuliana
Stievano, Lorenzo
Mali, Gregor
Dominko, Robert
description Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries. Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation.
doi_str_mv 10.1002/cphc.201300972
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00969129v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512555197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933</originalsourceid><addsrcrecordid>eNqF0c1v0zAYB-AIgdgYXDkiSwgJDin-iOvk2FXbSlUKoiB2sxzn9eqRxsUfg_LXk9BSEBdOtuznff3xy7KnBI8IxvS13q71iGLCMK4EvZedkoJVuRgX5P5hXlDGT7JHIdxijEssyMPshBZFrzE-zX5c517t0KQOzm-jdR1agvL5RXMDaBV90jF5QKpr0DLptt9Cb9VNB9Fq9AGC61SnB5iaHXIGxTWghY1rmzb5KrUmeXSuYgS_-9XCxoCmbrN1HXQxPM4eGNUGeHIYz7JPlxcfp7N88e7qzXSyyPW4KGmu9dgIXteNrhtRG0OFppoybQCUKqhihlaVBtyQBkpaGMNqZrhpQDBueMXYWfZq33etWrn1dqP8Tjpl5WyykMNa_3XjitDqjvT25d5uvfuaIES5sUFD26oOXAqScEI556QSPX3-D711yXf9SwZFOC8ZGQ4f7ZX2LgQP5ngDguWQoBwSlMcE-4Jnh7ap3kBz5L8j68GLA1BBq9b4PgIb_riSVZTisnfV3n2zLez-c6ycvp9N_75Evq-1IcL3Y63yX-RYMMHl5-WVXBRzQefXc7liPwFmSMR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511558313</pqid></control><display><type>article</type><title>X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Patel, Manu U. M. ; Arčon, Iztok ; Aquilanti, Giuliana ; Stievano, Lorenzo ; Mali, Gregor ; Dominko, Robert</creator><creatorcontrib>Patel, Manu U. M. ; Arčon, Iztok ; Aquilanti, Giuliana ; Stievano, Lorenzo ; Mali, Gregor ; Dominko, Robert</creatorcontrib><description>Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries. Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201300972</identifier><identifier>PMID: 24497200</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; batteries ; Chemical Sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; lithium ; Material chemistry ; NMR ; nmr spectroscopy ; Nuclear magnetic resonance ; polysulfides ; Spectrum analysis ; x-ray absorption spectroscopy ; X-rays</subject><ispartof>Chemphyschem, 2014-04, Vol.15 (5), p.894-904</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933</citedby><cites>FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933</cites><orcidid>0000-0001-8548-0231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28392208$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24497200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00969129$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Manu U. M.</creatorcontrib><creatorcontrib>Arčon, Iztok</creatorcontrib><creatorcontrib>Aquilanti, Giuliana</creatorcontrib><creatorcontrib>Stievano, Lorenzo</creatorcontrib><creatorcontrib>Mali, Gregor</creatorcontrib><creatorcontrib>Dominko, Robert</creatorcontrib><title>X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries. Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation.</description><subject>Applied sciences</subject><subject>batteries</subject><subject>Chemical Sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>lithium</subject><subject>Material chemistry</subject><subject>NMR</subject><subject>nmr spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>polysulfides</subject><subject>Spectrum analysis</subject><subject>x-ray absorption spectroscopy</subject><subject>X-rays</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0c1v0zAYB-AIgdgYXDkiSwgJDin-iOvk2FXbSlUKoiB2sxzn9eqRxsUfg_LXk9BSEBdOtuznff3xy7KnBI8IxvS13q71iGLCMK4EvZedkoJVuRgX5P5hXlDGT7JHIdxijEssyMPshBZFrzE-zX5c517t0KQOzm-jdR1agvL5RXMDaBV90jF5QKpr0DLptt9Cb9VNB9Fq9AGC61SnB5iaHXIGxTWghY1rmzb5KrUmeXSuYgS_-9XCxoCmbrN1HXQxPM4eGNUGeHIYz7JPlxcfp7N88e7qzXSyyPW4KGmu9dgIXteNrhtRG0OFppoybQCUKqhihlaVBtyQBkpaGMNqZrhpQDBueMXYWfZq33etWrn1dqP8Tjpl5WyykMNa_3XjitDqjvT25d5uvfuaIES5sUFD26oOXAqScEI556QSPX3-D711yXf9SwZFOC8ZGQ4f7ZX2LgQP5ngDguWQoBwSlMcE-4Jnh7ap3kBz5L8j68GLA1BBq9b4PgIb_riSVZTisnfV3n2zLez-c6ycvp9N_75Evq-1IcL3Y63yX-RYMMHl5-WVXBRzQefXc7liPwFmSMR8</recordid><startdate>20140404</startdate><enddate>20140404</enddate><creator>Patel, Manu U. M.</creator><creator>Arčon, Iztok</creator><creator>Aquilanti, Giuliana</creator><creator>Stievano, Lorenzo</creator><creator>Mali, Gregor</creator><creator>Dominko, Robert</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8548-0231</orcidid></search><sort><creationdate>20140404</creationdate><title>X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components</title><author>Patel, Manu U. M. ; Arčon, Iztok ; Aquilanti, Giuliana ; Stievano, Lorenzo ; Mali, Gregor ; Dominko, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>batteries</topic><topic>Chemical Sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>lithium</topic><topic>Material chemistry</topic><topic>NMR</topic><topic>nmr spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>polysulfides</topic><topic>Spectrum analysis</topic><topic>x-ray absorption spectroscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Manu U. M.</creatorcontrib><creatorcontrib>Arčon, Iztok</creatorcontrib><creatorcontrib>Aquilanti, Giuliana</creatorcontrib><creatorcontrib>Stievano, Lorenzo</creatorcontrib><creatorcontrib>Mali, Gregor</creatorcontrib><creatorcontrib>Dominko, Robert</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Manu U. M.</au><au>Arčon, Iztok</au><au>Aquilanti, Giuliana</au><au>Stievano, Lorenzo</au><au>Mali, Gregor</au><au>Dominko, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2014-04-04</date><risdate>2014</risdate><volume>15</volume><issue>5</issue><spage>894</spage><epage>904</epage><pages>894-904</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries. Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24497200</pmid><doi>10.1002/cphc.201300972</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8548-0231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2014-04, Vol.15 (5), p.894-904
issn 1439-4235
1439-7641
language eng
recordid cdi_hal_primary_oai_HAL_hal_00969129v1
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
batteries
Chemical Sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
lithium
Material chemistry
NMR
nmr spectroscopy
Nuclear magnetic resonance
polysulfides
Spectrum analysis
x-ray absorption spectroscopy
X-rays
title X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20Absorption%20Near-Edge%20Structure%20and%20Nuclear%20Magnetic%20Resonance%20Study%20of%20the%20Lithium-Sulfur%20Battery%20and%20its%20Components&rft.jtitle=Chemphyschem&rft.au=Patel,%20Manu%20U.%20M.&rft.date=2014-04-04&rft.volume=15&rft.issue=5&rft.spage=894&rft.epage=904&rft.pages=894-904&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201300972&rft_dat=%3Cproquest_hal_p%3E1512555197%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6482-cc6f75bbdcbd7bff27c2c23cfeeaa42a3f299ce0d1de824ff3b3f5fde735f5933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1511558313&rft_id=info:pmid/24497200&rfr_iscdi=true