Loading…

Elastic signature of flow events in supercooled liquids under shear

Using numerical simulation of a 2D Lennard-Jones system, we study the crossover from shear thinning to Newtonian flow. We find that the short-time elastic response of our system essentially does not change through this crossover, and show that, in the Newtonian regime, thermal activation triggers sh...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2013-08, Vol.111 (6), p.066001-066001, Article 066001
Main Authors: Chattoraj, Joyjit, Lemaître, Anaël
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using numerical simulation of a 2D Lennard-Jones system, we study the crossover from shear thinning to Newtonian flow. We find that the short-time elastic response of our system essentially does not change through this crossover, and show that, in the Newtonian regime, thermal activation triggers shear transformations, i.e., local irreversible shear events that produce Eshelby (long-ranged, anisotropic) deformation fields as previously seen in low-T glasses. Quite surprisingly, these Eshelby fields are found to persist much beyond the α-relaxation time, and shear thinning to coincide with the emergence of correlations between shear relaxation centers.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.111.066001