Loading…
Elastic signature of flow events in supercooled liquids under shear
Using numerical simulation of a 2D Lennard-Jones system, we study the crossover from shear thinning to Newtonian flow. We find that the short-time elastic response of our system essentially does not change through this crossover, and show that, in the Newtonian regime, thermal activation triggers sh...
Saved in:
Published in: | Physical review letters 2013-08, Vol.111 (6), p.066001-066001, Article 066001 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using numerical simulation of a 2D Lennard-Jones system, we study the crossover from shear thinning to Newtonian flow. We find that the short-time elastic response of our system essentially does not change through this crossover, and show that, in the Newtonian regime, thermal activation triggers shear transformations, i.e., local irreversible shear events that produce Eshelby (long-ranged, anisotropic) deformation fields as previously seen in low-T glasses. Quite surprisingly, these Eshelby fields are found to persist much beyond the α-relaxation time, and shear thinning to coincide with the emergence of correlations between shear relaxation centers. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.111.066001 |