Loading…

Normalized particle size distribution for remote sensing application

The ice particle size distribution (PSD) is fundamental to the quantitative description of a cloud. It is also crucial in the development of remote sensing retrieval techniques using radar and/or lidar measurements. The PSD allows one to link characteristics of individual particles (area, mass, and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Atmospheres 2014-04, Vol.119 (7), p.4204-4227
Main Authors: Delanoë, J. M. E., Heymsfield, A. J., Protat, A., Bansemer, A., Hogan, R. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4834-61539b78383d4fc7d33e608e599079c1d8c7072ec1cd8924d0d4f4fe956a6dad3
cites cdi_FETCH-LOGICAL-c4834-61539b78383d4fc7d33e608e599079c1d8c7072ec1cd8924d0d4f4fe956a6dad3
container_end_page 4227
container_issue 7
container_start_page 4204
container_title Journal of geophysical research. Atmospheres
container_volume 119
creator Delanoë, J. M. E.
Heymsfield, A. J.
Protat, A.
Bansemer, A.
Hogan, R. J.
description The ice particle size distribution (PSD) is fundamental to the quantitative description of a cloud. It is also crucial in the development of remote sensing retrieval techniques using radar and/or lidar measurements. The PSD allows one to link characteristics of individual particles (area, mass, and scattering properties) to characteristics of an ensemble of particles in a sampling volume (e.g., visible extinction (σ), ice water content (IWC), and radar reflectivity (Z)). The aim of this study is to describe a normalization technique to represent the PSD. We update an earlier study by including recent in situ measurements covering a large variety of ice clouds spanning temperatures ranging between −80°C and 0°C. This new data set also includes direct measurements of IWC. We demonstrate that it is possible to scale the PSD in size space by the volume‐weighted diameter Dm and in the concentration space by the intercept parameter N0∗ and obtain the intrinsic shape of the PSD. Therefore, by combining N0∗, Dm, and a modified gamma function representing the normalized PSD shape, we are able to approximate key cloud variables (such as IWC) as well as cloud properties which can be remotely observed (such as Z) with an absolute mean relative error smaller than 20%. The underlying idea is to be able to retrieve the PSD using two independent measurements. We also propose parameterizations for ice cloud key parameters derived from the normalized PSD. We also investigate the effects of uncertainty present in the ice crystal mass‐size relationships on the parameterizations and the normalized PSD approach. Key PointsThis study describes a normalization technique to represent the PSDIn‐situ measurements are covering a large variety of ice cloudsThis new data set also includes direct measurements of IWC
doi_str_mv 10.1002/2013JD020700
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00979328v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671562794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4834-61539b78383d4fc7d33e608e599079c1d8c7072ec1cd8924d0d4f4fe956a6dad3</originalsourceid><addsrcrecordid>eNqF0UtvEzEQAOBVBRJV6Y0fsFIvILEwftvHKmlTQpSKCkRvlmt7qctmvbU3QPn1OFoUoR6oL37MN6OxpqpeIXiHAPB7DIgs54BBABxUhxhx1Uil-LP9WVy_qI5zvoOyJBDK6GE1X8e0MV347V09mDQG2_k6l2vtQh5TuNmOIfZ1G1Od_CaOJej7HPpvtRmGLlizC7-snremy_74735UfTk_-zy7aFaXiw-z01VjqSS04YgRdSMkkcTR1gpHiOcgPVMKhLLISStAYG-RdVJh6qAw2nrFuOHOOHJUvZnq3ppODylsTHrQ0QR9cbrSuzcAJRTB8gcq9vVkhxTvtz6PehOy9V1neh-3WSMuEONYKPo0ZVgpyjnFhZ48ondxm_ry6VKQSAqAGCvq7aRsijkn3-6bRaB3w9L_DqtwMvGfofMP_7V6ubiaM4Torutmyipz8r_2WSZ911wQwfTX9UKvZ2h5_XHxSV-RPzOBogU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638400155</pqid></control><display><type>article</type><title>Normalized particle size distribution for remote sensing application</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Delanoë, J. M. E. ; Heymsfield, A. J. ; Protat, A. ; Bansemer, A. ; Hogan, R. J.</creator><creatorcontrib>Delanoë, J. M. E. ; Heymsfield, A. J. ; Protat, A. ; Bansemer, A. ; Hogan, R. J.</creatorcontrib><description>The ice particle size distribution (PSD) is fundamental to the quantitative description of a cloud. It is also crucial in the development of remote sensing retrieval techniques using radar and/or lidar measurements. The PSD allows one to link characteristics of individual particles (area, mass, and scattering properties) to characteristics of an ensemble of particles in a sampling volume (e.g., visible extinction (σ), ice water content (IWC), and radar reflectivity (Z)). The aim of this study is to describe a normalization technique to represent the PSD. We update an earlier study by including recent in situ measurements covering a large variety of ice clouds spanning temperatures ranging between −80°C and 0°C. This new data set also includes direct measurements of IWC. We demonstrate that it is possible to scale the PSD in size space by the volume‐weighted diameter Dm and in the concentration space by the intercept parameter N0∗ and obtain the intrinsic shape of the PSD. Therefore, by combining N0∗, Dm, and a modified gamma function representing the normalized PSD shape, we are able to approximate key cloud variables (such as IWC) as well as cloud properties which can be remotely observed (such as Z) with an absolute mean relative error smaller than 20%. The underlying idea is to be able to retrieve the PSD using two independent measurements. We also propose parameterizations for ice cloud key parameters derived from the normalized PSD. We also investigate the effects of uncertainty present in the ice crystal mass‐size relationships on the parameterizations and the normalized PSD approach. Key PointsThis study describes a normalization technique to represent the PSDIn‐situ measurements are covering a large variety of ice cloudsThis new data set also includes direct measurements of IWC</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2013JD020700</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric and Oceanic Physics ; Clouds ; Covering ; Earth Sciences ; Geophysics ; Ice ; Ice clouds ; In situ measurement ; Lidar ; Meteorology ; Parametrization ; Particle size ; Particle size distribution ; Physics ; PSI ; Radar ; Remote sensing ; Sampling ; Sciences of the Universe ; Water content</subject><ispartof>Journal of geophysical research. Atmospheres, 2014-04, Vol.119 (7), p.4204-4227</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4834-61539b78383d4fc7d33e608e599079c1d8c7072ec1cd8924d0d4f4fe956a6dad3</citedby><cites>FETCH-LOGICAL-c4834-61539b78383d4fc7d33e608e599079c1d8c7072ec1cd8924d0d4f4fe956a6dad3</cites><orcidid>0000-0002-8933-874X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00979328$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delanoë, J. M. E.</creatorcontrib><creatorcontrib>Heymsfield, A. J.</creatorcontrib><creatorcontrib>Protat, A.</creatorcontrib><creatorcontrib>Bansemer, A.</creatorcontrib><creatorcontrib>Hogan, R. J.</creatorcontrib><title>Normalized particle size distribution for remote sensing application</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>The ice particle size distribution (PSD) is fundamental to the quantitative description of a cloud. It is also crucial in the development of remote sensing retrieval techniques using radar and/or lidar measurements. The PSD allows one to link characteristics of individual particles (area, mass, and scattering properties) to characteristics of an ensemble of particles in a sampling volume (e.g., visible extinction (σ), ice water content (IWC), and radar reflectivity (Z)). The aim of this study is to describe a normalization technique to represent the PSD. We update an earlier study by including recent in situ measurements covering a large variety of ice clouds spanning temperatures ranging between −80°C and 0°C. This new data set also includes direct measurements of IWC. We demonstrate that it is possible to scale the PSD in size space by the volume‐weighted diameter Dm and in the concentration space by the intercept parameter N0∗ and obtain the intrinsic shape of the PSD. Therefore, by combining N0∗, Dm, and a modified gamma function representing the normalized PSD shape, we are able to approximate key cloud variables (such as IWC) as well as cloud properties which can be remotely observed (such as Z) with an absolute mean relative error smaller than 20%. The underlying idea is to be able to retrieve the PSD using two independent measurements. We also propose parameterizations for ice cloud key parameters derived from the normalized PSD. We also investigate the effects of uncertainty present in the ice crystal mass‐size relationships on the parameterizations and the normalized PSD approach. Key PointsThis study describes a normalization technique to represent the PSDIn‐situ measurements are covering a large variety of ice cloudsThis new data set also includes direct measurements of IWC</description><subject>Atmospheric and Oceanic Physics</subject><subject>Clouds</subject><subject>Covering</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Ice clouds</subject><subject>In situ measurement</subject><subject>Lidar</subject><subject>Meteorology</subject><subject>Parametrization</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Physics</subject><subject>PSI</subject><subject>Radar</subject><subject>Remote sensing</subject><subject>Sampling</subject><subject>Sciences of the Universe</subject><subject>Water content</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0UtvEzEQAOBVBRJV6Y0fsFIvILEwftvHKmlTQpSKCkRvlmt7qctmvbU3QPn1OFoUoR6oL37MN6OxpqpeIXiHAPB7DIgs54BBABxUhxhx1Uil-LP9WVy_qI5zvoOyJBDK6GE1X8e0MV347V09mDQG2_k6l2vtQh5TuNmOIfZ1G1Od_CaOJej7HPpvtRmGLlizC7-snremy_74735UfTk_-zy7aFaXiw-z01VjqSS04YgRdSMkkcTR1gpHiOcgPVMKhLLISStAYG-RdVJh6qAw2nrFuOHOOHJUvZnq3ppODylsTHrQ0QR9cbrSuzcAJRTB8gcq9vVkhxTvtz6PehOy9V1neh-3WSMuEONYKPo0ZVgpyjnFhZ48ondxm_ry6VKQSAqAGCvq7aRsijkn3-6bRaB3w9L_DqtwMvGfofMP_7V6ubiaM4Torutmyipz8r_2WSZ911wQwfTX9UKvZ2h5_XHxSV-RPzOBogU</recordid><startdate>20140416</startdate><enddate>20140416</enddate><creator>Delanoë, J. M. E.</creator><creator>Heymsfield, A. J.</creator><creator>Protat, A.</creator><creator>Bansemer, A.</creator><creator>Hogan, R. J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid></search><sort><creationdate>20140416</creationdate><title>Normalized particle size distribution for remote sensing application</title><author>Delanoë, J. M. E. ; Heymsfield, A. J. ; Protat, A. ; Bansemer, A. ; Hogan, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4834-61539b78383d4fc7d33e608e599079c1d8c7072ec1cd8924d0d4f4fe956a6dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmospheric and Oceanic Physics</topic><topic>Clouds</topic><topic>Covering</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Ice clouds</topic><topic>In situ measurement</topic><topic>Lidar</topic><topic>Meteorology</topic><topic>Parametrization</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Physics</topic><topic>PSI</topic><topic>Radar</topic><topic>Remote sensing</topic><topic>Sampling</topic><topic>Sciences of the Universe</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delanoë, J. M. E.</creatorcontrib><creatorcontrib>Heymsfield, A. J.</creatorcontrib><creatorcontrib>Protat, A.</creatorcontrib><creatorcontrib>Bansemer, A.</creatorcontrib><creatorcontrib>Hogan, R. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delanoë, J. M. E.</au><au>Heymsfield, A. J.</au><au>Protat, A.</au><au>Bansemer, A.</au><au>Hogan, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalized particle size distribution for remote sensing application</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2014-04-16</date><risdate>2014</risdate><volume>119</volume><issue>7</issue><spage>4204</spage><epage>4227</epage><pages>4204-4227</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The ice particle size distribution (PSD) is fundamental to the quantitative description of a cloud. It is also crucial in the development of remote sensing retrieval techniques using radar and/or lidar measurements. The PSD allows one to link characteristics of individual particles (area, mass, and scattering properties) to characteristics of an ensemble of particles in a sampling volume (e.g., visible extinction (σ), ice water content (IWC), and radar reflectivity (Z)). The aim of this study is to describe a normalization technique to represent the PSD. We update an earlier study by including recent in situ measurements covering a large variety of ice clouds spanning temperatures ranging between −80°C and 0°C. This new data set also includes direct measurements of IWC. We demonstrate that it is possible to scale the PSD in size space by the volume‐weighted diameter Dm and in the concentration space by the intercept parameter N0∗ and obtain the intrinsic shape of the PSD. Therefore, by combining N0∗, Dm, and a modified gamma function representing the normalized PSD shape, we are able to approximate key cloud variables (such as IWC) as well as cloud properties which can be remotely observed (such as Z) with an absolute mean relative error smaller than 20%. The underlying idea is to be able to retrieve the PSD using two independent measurements. We also propose parameterizations for ice cloud key parameters derived from the normalized PSD. We also investigate the effects of uncertainty present in the ice crystal mass‐size relationships on the parameterizations and the normalized PSD approach. Key PointsThis study describes a normalization technique to represent the PSDIn‐situ measurements are covering a large variety of ice cloudsThis new data set also includes direct measurements of IWC</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JD020700</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2014-04, Vol.119 (7), p.4204-4227
issn 2169-897X
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_hal_00979328v1
source Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection
subjects Atmospheric and Oceanic Physics
Clouds
Covering
Earth Sciences
Geophysics
Ice
Ice clouds
In situ measurement
Lidar
Meteorology
Parametrization
Particle size
Particle size distribution
Physics
PSI
Radar
Remote sensing
Sampling
Sciences of the Universe
Water content
title Normalized particle size distribution for remote sensing application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalized%20particle%20size%20distribution%20for%20remote%20sensing%20application&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Delano%C3%AB,%20J.%20M.%20E.&rft.date=2014-04-16&rft.volume=119&rft.issue=7&rft.spage=4204&rft.epage=4227&rft.pages=4204-4227&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2013JD020700&rft_dat=%3Cproquest_hal_p%3E1671562794%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4834-61539b78383d4fc7d33e608e599079c1d8c7072ec1cd8924d0d4f4fe956a6dad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1638400155&rft_id=info:pmid/&rfr_iscdi=true