Loading…

Nonlinear forced vibrations of rotating anisotropic beams

This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are co...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2013-12, Vol.74 (4), p.1281-1296
Main Authors: Bekhoucha, Ferhat, Rechak, Said, Duigou, Laëtitia, Cadou, Jean-Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53
cites cdi_FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53
container_end_page 1296
container_issue 4
container_start_page 1281
container_title Nonlinear dynamics
container_volume 74
creator Bekhoucha, Ferhat
Rechak, Said
Duigou, Laëtitia
Cadou, Jean-Marc
description This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are converted into a static formulation. This latter is treated with two continuation methods. The first one is the asymptotic-numerical method, where power series expansions and Padé approximants are used to represent the generalized vector of displacement and the frequency. The second one is the pseudo-arclength continuation method. Numerical tests dealing with isotropic and anisotropic beams are considered. The natural frequencies obtained for prismatic beams are compared with the literature. Response curves are obtained and the nonlinearity is investigated for various geometrical conditions, excitation amplitudes and kinematical conditions. The nonlinearity related to the angular speed for prismatic isotropic beam is thus identified. The stability of the solution branch is examined, in the frequency domain using the Floquet theory.
doi_str_mv 10.1007/s11071-013-1040-3
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00985314v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259460819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeCL_pQvUvSNnkcQ50w9EVhbyFpk9nRNTPpBn57WyoKgk_HHb__cfcj5BLhFgGKu4gIBaaALEXgkLIjMsGsYCnN5eqYTEBSnoKE1Sk5i3EDAIyCmBD57Numbq0OifOhtFVyqE3QXe3bmHiXBN_1TbtOdFtH3wW_q8vEWL2N5-TE6Sbai-86JW8P96_zRbp8eXyaz5ZpyQTrUmcyTjMuc2FMYYwVzkgBOQeeS-d0ISWtnMwRZSYoowVWleXUytJYbqnN2JTcjHvfdaN2od7q8Km8rtVitlTDDECKjCE_YM9ej-wu-I-9jZ3a1rG0TaNb6_dRYQY5K-ggZkqu_qAbvw9t_4miNJM8B4Gyp3CkyuBjDNb9XICgBvFqFK968WoQr1ifoWMm9my7tuF38_-hL-o3g5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259460819</pqid></control><display><type>article</type><title>Nonlinear forced vibrations of rotating anisotropic beams</title><source>Springer Link</source><creator>Bekhoucha, Ferhat ; Rechak, Said ; Duigou, Laëtitia ; Cadou, Jean-Marc</creator><creatorcontrib>Bekhoucha, Ferhat ; Rechak, Said ; Duigou, Laëtitia ; Cadou, Jean-Marc</creatorcontrib><description>This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are converted into a static formulation. This latter is treated with two continuation methods. The first one is the asymptotic-numerical method, where power series expansions and Padé approximants are used to represent the generalized vector of displacement and the frequency. The second one is the pseudo-arclength continuation method. Numerical tests dealing with isotropic and anisotropic beams are considered. The natural frequencies obtained for prismatic beams are compared with the literature. Response curves are obtained and the nonlinearity is investigated for various geometrical conditions, excitation amplitudes and kinematical conditions. The nonlinearity related to the angular speed for prismatic isotropic beam is thus identified. The stability of the solution branch is examined, in the frequency domain using the Floquet theory.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-013-1040-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Angular speed ; Anisotropy ; Approximants ; Asymptotic methods ; Automotive Engineering ; Classical Mechanics ; Continuation methods ; Control ; Dynamical Systems ; Engineering ; Equations of motion ; Forced vibration ; Galerkin method ; Mechanical Engineering ; Nonlinearity ; Numerical methods ; Original Paper ; Power series ; Resonant frequencies ; Rotation ; Test procedures ; Vibration</subject><ispartof>Nonlinear dynamics, 2013-12, Vol.74 (4), p.1281-1296</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2013). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53</citedby><cites>FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53</cites><orcidid>0000-0002-9448-4645 ; 0009-0008-8125-5027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00985314$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bekhoucha, Ferhat</creatorcontrib><creatorcontrib>Rechak, Said</creatorcontrib><creatorcontrib>Duigou, Laëtitia</creatorcontrib><creatorcontrib>Cadou, Jean-Marc</creatorcontrib><title>Nonlinear forced vibrations of rotating anisotropic beams</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are converted into a static formulation. This latter is treated with two continuation methods. The first one is the asymptotic-numerical method, where power series expansions and Padé approximants are used to represent the generalized vector of displacement and the frequency. The second one is the pseudo-arclength continuation method. Numerical tests dealing with isotropic and anisotropic beams are considered. The natural frequencies obtained for prismatic beams are compared with the literature. Response curves are obtained and the nonlinearity is investigated for various geometrical conditions, excitation amplitudes and kinematical conditions. The nonlinearity related to the angular speed for prismatic isotropic beam is thus identified. The stability of the solution branch is examined, in the frequency domain using the Floquet theory.</description><subject>Angular speed</subject><subject>Anisotropy</subject><subject>Approximants</subject><subject>Asymptotic methods</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Continuation methods</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Forced vibration</subject><subject>Galerkin method</subject><subject>Mechanical Engineering</subject><subject>Nonlinearity</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Power series</subject><subject>Resonant frequencies</subject><subject>Rotation</subject><subject>Test procedures</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKcfwLeCL_pQvUvSNnkcQ50w9EVhbyFpk9nRNTPpBn57WyoKgk_HHb__cfcj5BLhFgGKu4gIBaaALEXgkLIjMsGsYCnN5eqYTEBSnoKE1Sk5i3EDAIyCmBD57Numbq0OifOhtFVyqE3QXe3bmHiXBN_1TbtOdFtH3wW_q8vEWL2N5-TE6Sbai-86JW8P96_zRbp8eXyaz5ZpyQTrUmcyTjMuc2FMYYwVzkgBOQeeS-d0ISWtnMwRZSYoowVWleXUytJYbqnN2JTcjHvfdaN2od7q8Km8rtVitlTDDECKjCE_YM9ej-wu-I-9jZ3a1rG0TaNb6_dRYQY5K-ggZkqu_qAbvw9t_4miNJM8B4Gyp3CkyuBjDNb9XICgBvFqFK968WoQr1ifoWMm9my7tuF38_-hL-o3g5w</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Bekhoucha, Ferhat</creator><creator>Rechak, Said</creator><creator>Duigou, Laëtitia</creator><creator>Cadou, Jean-Marc</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9448-4645</orcidid><orcidid>https://orcid.org/0009-0008-8125-5027</orcidid></search><sort><creationdate>20131201</creationdate><title>Nonlinear forced vibrations of rotating anisotropic beams</title><author>Bekhoucha, Ferhat ; Rechak, Said ; Duigou, Laëtitia ; Cadou, Jean-Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angular speed</topic><topic>Anisotropy</topic><topic>Approximants</topic><topic>Asymptotic methods</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Continuation methods</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Forced vibration</topic><topic>Galerkin method</topic><topic>Mechanical Engineering</topic><topic>Nonlinearity</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Power series</topic><topic>Resonant frequencies</topic><topic>Rotation</topic><topic>Test procedures</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekhoucha, Ferhat</creatorcontrib><creatorcontrib>Rechak, Said</creatorcontrib><creatorcontrib>Duigou, Laëtitia</creatorcontrib><creatorcontrib>Cadou, Jean-Marc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekhoucha, Ferhat</au><au>Rechak, Said</au><au>Duigou, Laëtitia</au><au>Cadou, Jean-Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear forced vibrations of rotating anisotropic beams</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>74</volume><issue>4</issue><spage>1281</spage><epage>1296</epage><pages>1281-1296</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are converted into a static formulation. This latter is treated with two continuation methods. The first one is the asymptotic-numerical method, where power series expansions and Padé approximants are used to represent the generalized vector of displacement and the frequency. The second one is the pseudo-arclength continuation method. Numerical tests dealing with isotropic and anisotropic beams are considered. The natural frequencies obtained for prismatic beams are compared with the literature. Response curves are obtained and the nonlinearity is investigated for various geometrical conditions, excitation amplitudes and kinematical conditions. The nonlinearity related to the angular speed for prismatic isotropic beam is thus identified. The stability of the solution branch is examined, in the frequency domain using the Floquet theory.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-013-1040-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9448-4645</orcidid><orcidid>https://orcid.org/0009-0008-8125-5027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2013-12, Vol.74 (4), p.1281-1296
issn 0924-090X
1573-269X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00985314v1
source Springer Link
subjects Angular speed
Anisotropy
Approximants
Asymptotic methods
Automotive Engineering
Classical Mechanics
Continuation methods
Control
Dynamical Systems
Engineering
Equations of motion
Forced vibration
Galerkin method
Mechanical Engineering
Nonlinearity
Numerical methods
Original Paper
Power series
Resonant frequencies
Rotation
Test procedures
Vibration
title Nonlinear forced vibrations of rotating anisotropic beams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20forced%20vibrations%20of%20rotating%20anisotropic%20beams&rft.jtitle=Nonlinear%20dynamics&rft.au=Bekhoucha,%20Ferhat&rft.date=2013-12-01&rft.volume=74&rft.issue=4&rft.spage=1281&rft.epage=1296&rft.pages=1281-1296&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-013-1040-3&rft_dat=%3Cproquest_hal_p%3E2259460819%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259460819&rft_id=info:pmid/&rfr_iscdi=true