Loading…
Nonlinear forced vibrations of rotating anisotropic beams
This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are co...
Saved in:
Published in: | Nonlinear dynamics 2013-12, Vol.74 (4), p.1281-1296 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53 |
container_end_page | 1296 |
container_issue | 4 |
container_start_page | 1281 |
container_title | Nonlinear dynamics |
container_volume | 74 |
creator | Bekhoucha, Ferhat Rechak, Said Duigou, Laëtitia Cadou, Jean-Marc |
description | This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are converted into a static formulation. This latter is treated with two continuation methods. The first one is the asymptotic-numerical method, where power series expansions and Padé approximants are used to represent the generalized vector of displacement and the frequency. The second one is the pseudo-arclength continuation method. Numerical tests dealing with isotropic and anisotropic beams are considered. The natural frequencies obtained for prismatic beams are compared with the literature. Response curves are obtained and the nonlinearity is investigated for various geometrical conditions, excitation amplitudes and kinematical conditions. The nonlinearity related to the angular speed for prismatic isotropic beam is thus identified. The stability of the solution branch is examined, in the frequency domain using the Floquet theory. |
doi_str_mv | 10.1007/s11071-013-1040-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00985314v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259460819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeCL_pQvUvSNnkcQ50w9EVhbyFpk9nRNTPpBn57WyoKgk_HHb__cfcj5BLhFgGKu4gIBaaALEXgkLIjMsGsYCnN5eqYTEBSnoKE1Sk5i3EDAIyCmBD57Numbq0OifOhtFVyqE3QXe3bmHiXBN_1TbtOdFtH3wW_q8vEWL2N5-TE6Sbai-86JW8P96_zRbp8eXyaz5ZpyQTrUmcyTjMuc2FMYYwVzkgBOQeeS-d0ISWtnMwRZSYoowVWleXUytJYbqnN2JTcjHvfdaN2od7q8Km8rtVitlTDDECKjCE_YM9ej-wu-I-9jZ3a1rG0TaNb6_dRYQY5K-ggZkqu_qAbvw9t_4miNJM8B4Gyp3CkyuBjDNb9XICgBvFqFK968WoQr1ifoWMm9my7tuF38_-hL-o3g5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259460819</pqid></control><display><type>article</type><title>Nonlinear forced vibrations of rotating anisotropic beams</title><source>Springer Link</source><creator>Bekhoucha, Ferhat ; Rechak, Said ; Duigou, Laëtitia ; Cadou, Jean-Marc</creator><creatorcontrib>Bekhoucha, Ferhat ; Rechak, Said ; Duigou, Laëtitia ; Cadou, Jean-Marc</creatorcontrib><description>This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are converted into a static formulation. This latter is treated with two continuation methods. The first one is the asymptotic-numerical method, where power series expansions and Padé approximants are used to represent the generalized vector of displacement and the frequency. The second one is the pseudo-arclength continuation method. Numerical tests dealing with isotropic and anisotropic beams are considered. The natural frequencies obtained for prismatic beams are compared with the literature. Response curves are obtained and the nonlinearity is investigated for various geometrical conditions, excitation amplitudes and kinematical conditions. The nonlinearity related to the angular speed for prismatic isotropic beam is thus identified. The stability of the solution branch is examined, in the frequency domain using the Floquet theory.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-013-1040-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Angular speed ; Anisotropy ; Approximants ; Asymptotic methods ; Automotive Engineering ; Classical Mechanics ; Continuation methods ; Control ; Dynamical Systems ; Engineering ; Equations of motion ; Forced vibration ; Galerkin method ; Mechanical Engineering ; Nonlinearity ; Numerical methods ; Original Paper ; Power series ; Resonant frequencies ; Rotation ; Test procedures ; Vibration</subject><ispartof>Nonlinear dynamics, 2013-12, Vol.74 (4), p.1281-1296</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2013). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53</citedby><cites>FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53</cites><orcidid>0000-0002-9448-4645 ; 0009-0008-8125-5027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00985314$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bekhoucha, Ferhat</creatorcontrib><creatorcontrib>Rechak, Said</creatorcontrib><creatorcontrib>Duigou, Laëtitia</creatorcontrib><creatorcontrib>Cadou, Jean-Marc</creatorcontrib><title>Nonlinear forced vibrations of rotating anisotropic beams</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are converted into a static formulation. This latter is treated with two continuation methods. The first one is the asymptotic-numerical method, where power series expansions and Padé approximants are used to represent the generalized vector of displacement and the frequency. The second one is the pseudo-arclength continuation method. Numerical tests dealing with isotropic and anisotropic beams are considered. The natural frequencies obtained for prismatic beams are compared with the literature. Response curves are obtained and the nonlinearity is investigated for various geometrical conditions, excitation amplitudes and kinematical conditions. The nonlinearity related to the angular speed for prismatic isotropic beam is thus identified. The stability of the solution branch is examined, in the frequency domain using the Floquet theory.</description><subject>Angular speed</subject><subject>Anisotropy</subject><subject>Approximants</subject><subject>Asymptotic methods</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Continuation methods</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Forced vibration</subject><subject>Galerkin method</subject><subject>Mechanical Engineering</subject><subject>Nonlinearity</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Power series</subject><subject>Resonant frequencies</subject><subject>Rotation</subject><subject>Test procedures</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKcfwLeCL_pQvUvSNnkcQ50w9EVhbyFpk9nRNTPpBn57WyoKgk_HHb__cfcj5BLhFgGKu4gIBaaALEXgkLIjMsGsYCnN5eqYTEBSnoKE1Sk5i3EDAIyCmBD57Numbq0OifOhtFVyqE3QXe3bmHiXBN_1TbtOdFtH3wW_q8vEWL2N5-TE6Sbai-86JW8P96_zRbp8eXyaz5ZpyQTrUmcyTjMuc2FMYYwVzkgBOQeeS-d0ISWtnMwRZSYoowVWleXUytJYbqnN2JTcjHvfdaN2od7q8Km8rtVitlTDDECKjCE_YM9ej-wu-I-9jZ3a1rG0TaNb6_dRYQY5K-ggZkqu_qAbvw9t_4miNJM8B4Gyp3CkyuBjDNb9XICgBvFqFK968WoQr1ifoWMm9my7tuF38_-hL-o3g5w</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Bekhoucha, Ferhat</creator><creator>Rechak, Said</creator><creator>Duigou, Laëtitia</creator><creator>Cadou, Jean-Marc</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9448-4645</orcidid><orcidid>https://orcid.org/0009-0008-8125-5027</orcidid></search><sort><creationdate>20131201</creationdate><title>Nonlinear forced vibrations of rotating anisotropic beams</title><author>Bekhoucha, Ferhat ; Rechak, Said ; Duigou, Laëtitia ; Cadou, Jean-Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angular speed</topic><topic>Anisotropy</topic><topic>Approximants</topic><topic>Asymptotic methods</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Continuation methods</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Forced vibration</topic><topic>Galerkin method</topic><topic>Mechanical Engineering</topic><topic>Nonlinearity</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Power series</topic><topic>Resonant frequencies</topic><topic>Rotation</topic><topic>Test procedures</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekhoucha, Ferhat</creatorcontrib><creatorcontrib>Rechak, Said</creatorcontrib><creatorcontrib>Duigou, Laëtitia</creatorcontrib><creatorcontrib>Cadou, Jean-Marc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekhoucha, Ferhat</au><au>Rechak, Said</au><au>Duigou, Laëtitia</au><au>Cadou, Jean-Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear forced vibrations of rotating anisotropic beams</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>74</volume><issue>4</issue><spage>1281</spage><epage>1296</epage><pages>1281-1296</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This work deals with forced vibration of nonlinear rotating anisotropic beams with uniform cross sections. Coupling the Galerkin method with the balance harmonic method, the nonlinear intrinsic and geometrically exact equations of motion for anisotropic beams subjected to large displacements, are converted into a static formulation. This latter is treated with two continuation methods. The first one is the asymptotic-numerical method, where power series expansions and Padé approximants are used to represent the generalized vector of displacement and the frequency. The second one is the pseudo-arclength continuation method. Numerical tests dealing with isotropic and anisotropic beams are considered. The natural frequencies obtained for prismatic beams are compared with the literature. Response curves are obtained and the nonlinearity is investigated for various geometrical conditions, excitation amplitudes and kinematical conditions. The nonlinearity related to the angular speed for prismatic isotropic beam is thus identified. The stability of the solution branch is examined, in the frequency domain using the Floquet theory.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-013-1040-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9448-4645</orcidid><orcidid>https://orcid.org/0009-0008-8125-5027</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2013-12, Vol.74 (4), p.1281-1296 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00985314v1 |
source | Springer Link |
subjects | Angular speed Anisotropy Approximants Asymptotic methods Automotive Engineering Classical Mechanics Continuation methods Control Dynamical Systems Engineering Equations of motion Forced vibration Galerkin method Mechanical Engineering Nonlinearity Numerical methods Original Paper Power series Resonant frequencies Rotation Test procedures Vibration |
title | Nonlinear forced vibrations of rotating anisotropic beams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20forced%20vibrations%20of%20rotating%20anisotropic%20beams&rft.jtitle=Nonlinear%20dynamics&rft.au=Bekhoucha,%20Ferhat&rft.date=2013-12-01&rft.volume=74&rft.issue=4&rft.spage=1281&rft.epage=1296&rft.pages=1281-1296&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-013-1040-3&rft_dat=%3Cproquest_hal_p%3E2259460819%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-fb54254968bb7bbe8fb980640469ffa7992df961195823271dde42e9cbe4e2e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259460819&rft_id=info:pmid/&rfr_iscdi=true |