Loading…
Oxidative Stretching of Metal–Metal Bonds to Their Limits
Oxidation of quadruply bonded Cr2(dpa)4, Mo2(dpa)4, MoW(dpa)4, and W2(dpa)4 (dpa = 2,2′-dipyridylamido) with 2 equiv of silver(I) triflate or ferrocenium triflate results in the formation of the two-electron-oxidized products [Cr2(dpa)4]2+ (1), [Mo2(dpa)4]2+ (2), [MoW(dpa)4]2+ (3), and [W2(dpa)4]2+...
Saved in:
Published in: | Inorganic chemistry 2014-05, Vol.53 (9), p.4777-4790 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a349t-ae8d25b726256849e6fc398d6b3852ae9b36da8897ba30802a72f27ad29352873 |
---|---|
cites | cdi_FETCH-LOGICAL-a349t-ae8d25b726256849e6fc398d6b3852ae9b36da8897ba30802a72f27ad29352873 |
container_end_page | 4790 |
container_issue | 9 |
container_start_page | 4777 |
container_title | Inorganic chemistry |
container_volume | 53 |
creator | Brogden, David W Turov, Yevgeniya Nippe, Michael Li Manni, Giovanni Hillard, Elizabeth A Clérac, Rodolphe Gagliardi, Laura Berry, John F |
description | Oxidation of quadruply bonded Cr2(dpa)4, Mo2(dpa)4, MoW(dpa)4, and W2(dpa)4 (dpa = 2,2′-dipyridylamido) with 2 equiv of silver(I) triflate or ferrocenium triflate results in the formation of the two-electron-oxidized products [Cr2(dpa)4]2+ (1), [Mo2(dpa)4]2+ (2), [MoW(dpa)4]2+ (3), and [W2(dpa)4]2+ (4). Additional two-electron oxidation and oxygen atom transfer by m-chloroperoxybenzoic acid results in the formation of the corresponding metal–oxo compounds [Mo2O(dpa)4]2+ (5), [WMoO(dpa)4]2+ (6), and [W2O(dpa)4]2+ (7), which feature an unusual linear M···MO structure. Crystallographic studies of the two-electron-oxidized products 2, 3, and 4, which have the appropriate number of orbitals and electrons to form metal–metal triple bonds, show bond distances much longer (by >0.5 Å) than those in established triply bonded compounds, but these compounds are nonetheless diamagnetic. In contrast, the Cr–Cr bond is completely severed in 1, and the resulting two isolated Cr3+ magnetic centers couple antiferromagnetically with J/k B= −108(3) K [−75(2) cm–1], as determined by modeling of the temperature dependence of the magnetic susceptibility. Density functional theory (DFT) and multiconfigurational methods (CASSCF/CASPT2) provide support for “stretched” and weak metal–metal triple bonds in 2, 3, and 4. The metal–metal distances in the metal–oxo compounds 5, 6, and 7 are elongated beyond the single-bond covalent radii of the metal atoms. DFT and CASSCF/CASPT2 calculations suggest that the metal atoms have minimal interaction; the electronic structure of these complexes is used to rationalize their multielectron redox reactivity. |
doi_str_mv | 10.1021/ic5007204 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00988047v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1521337108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-ae8d25b726256849e6fc398d6b3852ae9b36da8897ba30802a72f27ad29352873</originalsourceid><addsrcrecordid>eNptkLFOwzAQQC0EoqUw8AMoCxIMgbOd2I6YSgUUKagDRWKznMShrpK4xEkFG__AH_IlpLSUhelOp6cn3UPoGMMFBoIvTRoCcALBDurjkIAfYnjeRX2AbseMRT104NwcACIasH3UIwEPGA5IH11N3kymGrPU3mNT6yadmerFs7n3oBtVfH18_kzv2laZ8xrrTWfa1F5sStO4Q7SXq8Lpo80coKfbm-lo7MeTu_vRMPYVDaLGV1pkJEw4YSRkIog0y1MaiYwlVIRE6SihLFNCRDxRFAQQxUlOuMpIREMiOB2g87V3pgq5qE2p6ndplZHjYSxXt-4vISDgS9yxZ2t2UdvXVrtGlsaluihUpW3rZJcHU8oxiD9tWlvnap1v3Rjkqqvcdu3Yk422TUqdbcnfkB1wugZU6uTctnXVFflH9A2A3nux</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521337108</pqid></control><display><type>article</type><title>Oxidative Stretching of Metal–Metal Bonds to Their Limits</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Brogden, David W ; Turov, Yevgeniya ; Nippe, Michael ; Li Manni, Giovanni ; Hillard, Elizabeth A ; Clérac, Rodolphe ; Gagliardi, Laura ; Berry, John F</creator><creatorcontrib>Brogden, David W ; Turov, Yevgeniya ; Nippe, Michael ; Li Manni, Giovanni ; Hillard, Elizabeth A ; Clérac, Rodolphe ; Gagliardi, Laura ; Berry, John F</creatorcontrib><description>Oxidation of quadruply bonded Cr2(dpa)4, Mo2(dpa)4, MoW(dpa)4, and W2(dpa)4 (dpa = 2,2′-dipyridylamido) with 2 equiv of silver(I) triflate or ferrocenium triflate results in the formation of the two-electron-oxidized products [Cr2(dpa)4]2+ (1), [Mo2(dpa)4]2+ (2), [MoW(dpa)4]2+ (3), and [W2(dpa)4]2+ (4). Additional two-electron oxidation and oxygen atom transfer by m-chloroperoxybenzoic acid results in the formation of the corresponding metal–oxo compounds [Mo2O(dpa)4]2+ (5), [WMoO(dpa)4]2+ (6), and [W2O(dpa)4]2+ (7), which feature an unusual linear M···MO structure. Crystallographic studies of the two-electron-oxidized products 2, 3, and 4, which have the appropriate number of orbitals and electrons to form metal–metal triple bonds, show bond distances much longer (by >0.5 Å) than those in established triply bonded compounds, but these compounds are nonetheless diamagnetic. In contrast, the Cr–Cr bond is completely severed in 1, and the resulting two isolated Cr3+ magnetic centers couple antiferromagnetically with J/k B= −108(3) K [−75(2) cm–1], as determined by modeling of the temperature dependence of the magnetic susceptibility. Density functional theory (DFT) and multiconfigurational methods (CASSCF/CASPT2) provide support for “stretched” and weak metal–metal triple bonds in 2, 3, and 4. The metal–metal distances in the metal–oxo compounds 5, 6, and 7 are elongated beyond the single-bond covalent radii of the metal atoms. DFT and CASSCF/CASPT2 calculations suggest that the metal atoms have minimal interaction; the electronic structure of these complexes is used to rationalize their multielectron redox reactivity.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic5007204</identifier><identifier>PMID: 24746142</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>Inorganic chemistry, 2014-05, Vol.53 (9), p.4777-4790</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-ae8d25b726256849e6fc398d6b3852ae9b36da8897ba30802a72f27ad29352873</citedby><cites>FETCH-LOGICAL-a349t-ae8d25b726256849e6fc398d6b3852ae9b36da8897ba30802a72f27ad29352873</cites><orcidid>0000-0001-5429-7418 ; 0000-0002-5149-0324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24746142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00988047$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brogden, David W</creatorcontrib><creatorcontrib>Turov, Yevgeniya</creatorcontrib><creatorcontrib>Nippe, Michael</creatorcontrib><creatorcontrib>Li Manni, Giovanni</creatorcontrib><creatorcontrib>Hillard, Elizabeth A</creatorcontrib><creatorcontrib>Clérac, Rodolphe</creatorcontrib><creatorcontrib>Gagliardi, Laura</creatorcontrib><creatorcontrib>Berry, John F</creatorcontrib><title>Oxidative Stretching of Metal–Metal Bonds to Their Limits</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Oxidation of quadruply bonded Cr2(dpa)4, Mo2(dpa)4, MoW(dpa)4, and W2(dpa)4 (dpa = 2,2′-dipyridylamido) with 2 equiv of silver(I) triflate or ferrocenium triflate results in the formation of the two-electron-oxidized products [Cr2(dpa)4]2+ (1), [Mo2(dpa)4]2+ (2), [MoW(dpa)4]2+ (3), and [W2(dpa)4]2+ (4). Additional two-electron oxidation and oxygen atom transfer by m-chloroperoxybenzoic acid results in the formation of the corresponding metal–oxo compounds [Mo2O(dpa)4]2+ (5), [WMoO(dpa)4]2+ (6), and [W2O(dpa)4]2+ (7), which feature an unusual linear M···MO structure. Crystallographic studies of the two-electron-oxidized products 2, 3, and 4, which have the appropriate number of orbitals and electrons to form metal–metal triple bonds, show bond distances much longer (by >0.5 Å) than those in established triply bonded compounds, but these compounds are nonetheless diamagnetic. In contrast, the Cr–Cr bond is completely severed in 1, and the resulting two isolated Cr3+ magnetic centers couple antiferromagnetically with J/k B= −108(3) K [−75(2) cm–1], as determined by modeling of the temperature dependence of the magnetic susceptibility. Density functional theory (DFT) and multiconfigurational methods (CASSCF/CASPT2) provide support for “stretched” and weak metal–metal triple bonds in 2, 3, and 4. The metal–metal distances in the metal–oxo compounds 5, 6, and 7 are elongated beyond the single-bond covalent radii of the metal atoms. DFT and CASSCF/CASPT2 calculations suggest that the metal atoms have minimal interaction; the electronic structure of these complexes is used to rationalize their multielectron redox reactivity.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAQQC0EoqUw8AMoCxIMgbOd2I6YSgUUKagDRWKznMShrpK4xEkFG__AH_IlpLSUhelOp6cn3UPoGMMFBoIvTRoCcALBDurjkIAfYnjeRX2AbseMRT104NwcACIasH3UIwEPGA5IH11N3kymGrPU3mNT6yadmerFs7n3oBtVfH18_kzv2laZ8xrrTWfa1F5sStO4Q7SXq8Lpo80coKfbm-lo7MeTu_vRMPYVDaLGV1pkJEw4YSRkIog0y1MaiYwlVIRE6SihLFNCRDxRFAQQxUlOuMpIREMiOB2g87V3pgq5qE2p6ndplZHjYSxXt-4vISDgS9yxZ2t2UdvXVrtGlsaluihUpW3rZJcHU8oxiD9tWlvnap1v3Rjkqqvcdu3Yk422TUqdbcnfkB1wugZU6uTctnXVFflH9A2A3nux</recordid><startdate>20140505</startdate><enddate>20140505</enddate><creator>Brogden, David W</creator><creator>Turov, Yevgeniya</creator><creator>Nippe, Michael</creator><creator>Li Manni, Giovanni</creator><creator>Hillard, Elizabeth A</creator><creator>Clérac, Rodolphe</creator><creator>Gagliardi, Laura</creator><creator>Berry, John F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5429-7418</orcidid><orcidid>https://orcid.org/0000-0002-5149-0324</orcidid></search><sort><creationdate>20140505</creationdate><title>Oxidative Stretching of Metal–Metal Bonds to Their Limits</title><author>Brogden, David W ; Turov, Yevgeniya ; Nippe, Michael ; Li Manni, Giovanni ; Hillard, Elizabeth A ; Clérac, Rodolphe ; Gagliardi, Laura ; Berry, John F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-ae8d25b726256849e6fc398d6b3852ae9b36da8897ba30802a72f27ad29352873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brogden, David W</creatorcontrib><creatorcontrib>Turov, Yevgeniya</creatorcontrib><creatorcontrib>Nippe, Michael</creatorcontrib><creatorcontrib>Li Manni, Giovanni</creatorcontrib><creatorcontrib>Hillard, Elizabeth A</creatorcontrib><creatorcontrib>Clérac, Rodolphe</creatorcontrib><creatorcontrib>Gagliardi, Laura</creatorcontrib><creatorcontrib>Berry, John F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brogden, David W</au><au>Turov, Yevgeniya</au><au>Nippe, Michael</au><au>Li Manni, Giovanni</au><au>Hillard, Elizabeth A</au><au>Clérac, Rodolphe</au><au>Gagliardi, Laura</au><au>Berry, John F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative Stretching of Metal–Metal Bonds to Their Limits</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2014-05-05</date><risdate>2014</risdate><volume>53</volume><issue>9</issue><spage>4777</spage><epage>4790</epage><pages>4777-4790</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Oxidation of quadruply bonded Cr2(dpa)4, Mo2(dpa)4, MoW(dpa)4, and W2(dpa)4 (dpa = 2,2′-dipyridylamido) with 2 equiv of silver(I) triflate or ferrocenium triflate results in the formation of the two-electron-oxidized products [Cr2(dpa)4]2+ (1), [Mo2(dpa)4]2+ (2), [MoW(dpa)4]2+ (3), and [W2(dpa)4]2+ (4). Additional two-electron oxidation and oxygen atom transfer by m-chloroperoxybenzoic acid results in the formation of the corresponding metal–oxo compounds [Mo2O(dpa)4]2+ (5), [WMoO(dpa)4]2+ (6), and [W2O(dpa)4]2+ (7), which feature an unusual linear M···MO structure. Crystallographic studies of the two-electron-oxidized products 2, 3, and 4, which have the appropriate number of orbitals and electrons to form metal–metal triple bonds, show bond distances much longer (by >0.5 Å) than those in established triply bonded compounds, but these compounds are nonetheless diamagnetic. In contrast, the Cr–Cr bond is completely severed in 1, and the resulting two isolated Cr3+ magnetic centers couple antiferromagnetically with J/k B= −108(3) K [−75(2) cm–1], as determined by modeling of the temperature dependence of the magnetic susceptibility. Density functional theory (DFT) and multiconfigurational methods (CASSCF/CASPT2) provide support for “stretched” and weak metal–metal triple bonds in 2, 3, and 4. The metal–metal distances in the metal–oxo compounds 5, 6, and 7 are elongated beyond the single-bond covalent radii of the metal atoms. DFT and CASSCF/CASPT2 calculations suggest that the metal atoms have minimal interaction; the electronic structure of these complexes is used to rationalize their multielectron redox reactivity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24746142</pmid><doi>10.1021/ic5007204</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5429-7418</orcidid><orcidid>https://orcid.org/0000-0002-5149-0324</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2014-05, Vol.53 (9), p.4777-4790 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00988047v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemical Sciences Material chemistry |
title | Oxidative Stretching of Metal–Metal Bonds to Their Limits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20Stretching%20of%20Metal%E2%80%93Metal%20Bonds%20to%20Their%20Limits&rft.jtitle=Inorganic%20chemistry&rft.au=Brogden,%20David%20W&rft.date=2014-05-05&rft.volume=53&rft.issue=9&rft.spage=4777&rft.epage=4790&rft.pages=4777-4790&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic5007204&rft_dat=%3Cproquest_hal_p%3E1521337108%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a349t-ae8d25b726256849e6fc398d6b3852ae9b36da8897ba30802a72f27ad29352873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1521337108&rft_id=info:pmid/24746142&rfr_iscdi=true |