Loading…

Tuning near field radiative heat flux through surface excitations with a metal insulator transition

The control of heat flow is a formidable challenge due to lack of good thermal insulators. Promising new opportunities for heat flow control were recently theoretically discovered for radiative heat flow in near field, where large heat flow contrasts may be achieved by tuning electronic excitations...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2012-06, Vol.108 (23), p.234301-234301, Article 234301
Main Authors: van Zwol, P J, Ranno, L, Chevrier, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The control of heat flow is a formidable challenge due to lack of good thermal insulators. Promising new opportunities for heat flow control were recently theoretically discovered for radiative heat flow in near field, where large heat flow contrasts may be achieved by tuning electronic excitations on surfaces. Here we show experimentally that the phase transition of VO2 entails a change of surface polariton states that significantly affects radiative heat transfer in near field. In all cases the Derjaguin approximation correctly predicted radiative heat transfer in near field, but it underestimated the far field limit. Our results indicate that heat flow contrasts can be realized in near field that can be larger than those obtained in far field.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.108.234301