Loading…

Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure

We report the spectral imaging in the UV to visible range with nanometer scale resolution of closely packed GaN/AlN quantum disks in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum e...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2011-02, Vol.11 (2), p.568-573
Main Authors: Zagonel, Luiz Fernando, Mazzucco, Stefano, Tencé, Marcel, March, Katia, Bernard, Romain, Laslier, Benoît, Jacopin, Gwénolé, Tchernycheva, Maria, Rigutti, Lorenzo, Julien, Francois H, Songmuang, Rudeesun, Kociak, Mathieu
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a413t-d441af3d1db58098dfff66f846b2c3f40ca67f57064f1ec046999961d3632e3e3
cites
container_end_page 573
container_issue 2
container_start_page 568
container_title Nano letters
container_volume 11
creator Zagonel, Luiz Fernando
Mazzucco, Stefano
Tencé, Marcel
March, Katia
Bernard, Romain
Laslier, Benoît
Jacopin, Gwénolé
Tchernycheva, Maria
Rigutti, Lorenzo
Julien, Francois H
Songmuang, Rudeesun
Kociak, Mathieu
description We report the spectral imaging in the UV to visible range with nanometer scale resolution of closely packed GaN/AlN quantum disks in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as 1 nm and separated from each other by only a few nanometers and the ability to correlate their optical properties to their size, measured with atomic resolution. The direct correlation between the quantum disk size and emission wavelength provides evidence of the quantum confined Stark effect leading to an emission below the bulk GaN band gap for disks thicker than 2.6 nm. With the help of simulations, we show that the internal electric field in the studied quantum disks is smaller than what is expected in the quantum well case. We show evidence of a clear dispersion of the emission wavelengths of different quantum disks of identical size but different positions along the wire. This dispersion is systematically correlated to a change of the diameter of the AlN shell coating the wire and is thus attributed to the related strain variations along the wire. The present work opens the way both to fundamental studies of quantum confinement in closely packed quantum emitters and to characterizations of optoelectronic devices presenting carrier localization on the nanometer scale.
doi_str_mv 10.1021/nl103549t
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01003141v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>856765427</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-d441af3d1db58098dfff66f846b2c3f40ca67f57064f1ec046999961d3632e3e3</originalsourceid><addsrcrecordid>eNptkc1uEzEURi0EoqWw4AWQN6hiEfDfOONlFBUaKQJBynp047luXXnsYHuKKvHwTNSQbFhd6-r4WP4-Qt5y9pEzwT_FwJlslKnPyDlvJJtpY8Tz47lVZ-RVKfeMMSMb9pKcCc5bIVp5Tv58hZgGrJjpxkJAutmhrRkCXQ1w6-MtTY5-HyHWcaBXg68TWaiPdH_vt89YKMSermqhy5QzBqg-RVoTvblDn-mipsFP4vBIf2BJ4QF7uql5tHXM-Jq8cBAKvjnMC_Lz89XN8nq2_vZltVysZ6C4rLNeKQ5O9rzfNi0zbe-c09q1Sm-FlU4xC3rumjnTynG0TE3fN0bzXmopUKK8IB-evHcQul32A-THLoHvrhfrbr9jnDHJFX_gE3v5xO5y-jViqd3gi8UQIGIaS9c2eq4bJeYnq82plIzuqOas2_fSHXuZ2HcH67gdsD-S_4qYgPcHAMoUl8sQrS8nThppBBcnDmzp7tOY4xTcfx78C6BHoVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856765427</pqid></control><display><type>article</type><title>Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zagonel, Luiz Fernando ; Mazzucco, Stefano ; Tencé, Marcel ; March, Katia ; Bernard, Romain ; Laslier, Benoît ; Jacopin, Gwénolé ; Tchernycheva, Maria ; Rigutti, Lorenzo ; Julien, Francois H ; Songmuang, Rudeesun ; Kociak, Mathieu</creator><creatorcontrib>Zagonel, Luiz Fernando ; Mazzucco, Stefano ; Tencé, Marcel ; March, Katia ; Bernard, Romain ; Laslier, Benoît ; Jacopin, Gwénolé ; Tchernycheva, Maria ; Rigutti, Lorenzo ; Julien, Francois H ; Songmuang, Rudeesun ; Kociak, Mathieu</creatorcontrib><description>We report the spectral imaging in the UV to visible range with nanometer scale resolution of closely packed GaN/AlN quantum disks in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as 1 nm and separated from each other by only a few nanometers and the ability to correlate their optical properties to their size, measured with atomic resolution. The direct correlation between the quantum disk size and emission wavelength provides evidence of the quantum confined Stark effect leading to an emission below the bulk GaN band gap for disks thicker than 2.6 nm. With the help of simulations, we show that the internal electric field in the studied quantum disks is smaller than what is expected in the quantum well case. We show evidence of a clear dispersion of the emission wavelengths of different quantum disks of identical size but different positions along the wire. This dispersion is systematically correlated to a change of the diameter of the AlN shell coating the wire and is thus attributed to the related strain variations along the wire. The present work opens the way both to fundamental studies of quantum confinement in closely packed quantum emitters and to characterizations of optoelectronic devices presenting carrier localization on the nanometer scale.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl103549t</identifier><identifier>PMID: 21182283</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed Matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Fullerenes and related materials ; Light ; Lighting - instrumentation ; Materials Science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - instrumentation ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Particle Size ; Physics ; Quantum Dots ; Quantum wires ; Scattering, Radiation ; Spectrophotometry, Ultraviolet - methods ; Visible and ultraviolet spectra</subject><ispartof>Nano letters, 2011-02, Vol.11 (2), p.568-573</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-d441af3d1db58098dfff66f846b2c3f40ca67f57064f1ec046999961d3632e3e3</citedby><orcidid>0000-0002-4043-0318 ; 0000-0003-3721-3029 ; 0000-0003-4144-0793 ; 0000-0001-9141-7706 ; 0000-0001-8858-0449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23939212$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21182283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01003141$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zagonel, Luiz Fernando</creatorcontrib><creatorcontrib>Mazzucco, Stefano</creatorcontrib><creatorcontrib>Tencé, Marcel</creatorcontrib><creatorcontrib>March, Katia</creatorcontrib><creatorcontrib>Bernard, Romain</creatorcontrib><creatorcontrib>Laslier, Benoît</creatorcontrib><creatorcontrib>Jacopin, Gwénolé</creatorcontrib><creatorcontrib>Tchernycheva, Maria</creatorcontrib><creatorcontrib>Rigutti, Lorenzo</creatorcontrib><creatorcontrib>Julien, Francois H</creatorcontrib><creatorcontrib>Songmuang, Rudeesun</creatorcontrib><creatorcontrib>Kociak, Mathieu</creatorcontrib><title>Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report the spectral imaging in the UV to visible range with nanometer scale resolution of closely packed GaN/AlN quantum disks in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as 1 nm and separated from each other by only a few nanometers and the ability to correlate their optical properties to their size, measured with atomic resolution. The direct correlation between the quantum disk size and emission wavelength provides evidence of the quantum confined Stark effect leading to an emission below the bulk GaN band gap for disks thicker than 2.6 nm. With the help of simulations, we show that the internal electric field in the studied quantum disks is smaller than what is expected in the quantum well case. We show evidence of a clear dispersion of the emission wavelengths of different quantum disks of identical size but different positions along the wire. This dispersion is systematically correlated to a change of the diameter of the AlN shell coating the wire and is thus attributed to the related strain variations along the wire. The present work opens the way both to fundamental studies of quantum confinement in closely packed quantum emitters and to characterizations of optoelectronic devices presenting carrier localization on the nanometer scale.</description><subject>Condensed Matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials</subject><subject>Light</subject><subject>Lighting - instrumentation</subject><subject>Materials Science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Quantum Dots</subject><subject>Quantum wires</subject><subject>Scattering, Radiation</subject><subject>Spectrophotometry, Ultraviolet - methods</subject><subject>Visible and ultraviolet spectra</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkc1uEzEURi0EoqWw4AWQN6hiEfDfOONlFBUaKQJBynp047luXXnsYHuKKvHwTNSQbFhd6-r4WP4-Qt5y9pEzwT_FwJlslKnPyDlvJJtpY8Tz47lVZ-RVKfeMMSMb9pKcCc5bIVp5Tv58hZgGrJjpxkJAutmhrRkCXQ1w6-MtTY5-HyHWcaBXg68TWaiPdH_vt89YKMSermqhy5QzBqg-RVoTvblDn-mipsFP4vBIf2BJ4QF7uql5tHXM-Jq8cBAKvjnMC_Lz89XN8nq2_vZltVysZ6C4rLNeKQ5O9rzfNi0zbe-c09q1Sm-FlU4xC3rumjnTynG0TE3fN0bzXmopUKK8IB-evHcQul32A-THLoHvrhfrbr9jnDHJFX_gE3v5xO5y-jViqd3gi8UQIGIaS9c2eq4bJeYnq82plIzuqOas2_fSHXuZ2HcH67gdsD-S_4qYgPcHAMoUl8sQrS8nThppBBcnDmzp7tOY4xTcfx78C6BHoVA</recordid><startdate>20110209</startdate><enddate>20110209</enddate><creator>Zagonel, Luiz Fernando</creator><creator>Mazzucco, Stefano</creator><creator>Tencé, Marcel</creator><creator>March, Katia</creator><creator>Bernard, Romain</creator><creator>Laslier, Benoît</creator><creator>Jacopin, Gwénolé</creator><creator>Tchernycheva, Maria</creator><creator>Rigutti, Lorenzo</creator><creator>Julien, Francois H</creator><creator>Songmuang, Rudeesun</creator><creator>Kociak, Mathieu</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4043-0318</orcidid><orcidid>https://orcid.org/0000-0003-3721-3029</orcidid><orcidid>https://orcid.org/0000-0003-4144-0793</orcidid><orcidid>https://orcid.org/0000-0001-9141-7706</orcidid><orcidid>https://orcid.org/0000-0001-8858-0449</orcidid></search><sort><creationdate>20110209</creationdate><title>Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure</title><author>Zagonel, Luiz Fernando ; Mazzucco, Stefano ; Tencé, Marcel ; March, Katia ; Bernard, Romain ; Laslier, Benoît ; Jacopin, Gwénolé ; Tchernycheva, Maria ; Rigutti, Lorenzo ; Julien, Francois H ; Songmuang, Rudeesun ; Kociak, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-d441af3d1db58098dfff66f846b2c3f40ca67f57064f1ec046999961d3632e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed Matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials</topic><topic>Light</topic><topic>Lighting - instrumentation</topic><topic>Materials Science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Quantum Dots</topic><topic>Quantum wires</topic><topic>Scattering, Radiation</topic><topic>Spectrophotometry, Ultraviolet - methods</topic><topic>Visible and ultraviolet spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagonel, Luiz Fernando</creatorcontrib><creatorcontrib>Mazzucco, Stefano</creatorcontrib><creatorcontrib>Tencé, Marcel</creatorcontrib><creatorcontrib>March, Katia</creatorcontrib><creatorcontrib>Bernard, Romain</creatorcontrib><creatorcontrib>Laslier, Benoît</creatorcontrib><creatorcontrib>Jacopin, Gwénolé</creatorcontrib><creatorcontrib>Tchernycheva, Maria</creatorcontrib><creatorcontrib>Rigutti, Lorenzo</creatorcontrib><creatorcontrib>Julien, Francois H</creatorcontrib><creatorcontrib>Songmuang, Rudeesun</creatorcontrib><creatorcontrib>Kociak, Mathieu</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagonel, Luiz Fernando</au><au>Mazzucco, Stefano</au><au>Tencé, Marcel</au><au>March, Katia</au><au>Bernard, Romain</au><au>Laslier, Benoît</au><au>Jacopin, Gwénolé</au><au>Tchernycheva, Maria</au><au>Rigutti, Lorenzo</au><au>Julien, Francois H</au><au>Songmuang, Rudeesun</au><au>Kociak, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-02-09</date><risdate>2011</risdate><volume>11</volume><issue>2</issue><spage>568</spage><epage>573</epage><pages>568-573</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report the spectral imaging in the UV to visible range with nanometer scale resolution of closely packed GaN/AlN quantum disks in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as 1 nm and separated from each other by only a few nanometers and the ability to correlate their optical properties to their size, measured with atomic resolution. The direct correlation between the quantum disk size and emission wavelength provides evidence of the quantum confined Stark effect leading to an emission below the bulk GaN band gap for disks thicker than 2.6 nm. With the help of simulations, we show that the internal electric field in the studied quantum disks is smaller than what is expected in the quantum well case. We show evidence of a clear dispersion of the emission wavelengths of different quantum disks of identical size but different positions along the wire. This dispersion is systematically correlated to a change of the diameter of the AlN shell coating the wire and is thus attributed to the related strain variations along the wire. The present work opens the way both to fundamental studies of quantum confinement in closely packed quantum emitters and to characterizations of optoelectronic devices presenting carrier localization on the nanometer scale.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21182283</pmid><doi>10.1021/nl103549t</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4043-0318</orcidid><orcidid>https://orcid.org/0000-0003-3721-3029</orcidid><orcidid>https://orcid.org/0000-0003-4144-0793</orcidid><orcidid>https://orcid.org/0000-0001-9141-7706</orcidid><orcidid>https://orcid.org/0000-0001-8858-0449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2011-02, Vol.11 (2), p.568-573
issn 1530-6984
1530-6992
language eng
recordid cdi_hal_primary_oai_HAL_hal_01003141v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Condensed Matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Fullerenes and related materials
Light
Lighting - instrumentation
Materials Science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanotechnology - instrumentation
Nanotubes - chemistry
Nanotubes - ultrastructure
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Particle Size
Physics
Quantum Dots
Quantum wires
Scattering, Radiation
Spectrophotometry, Ultraviolet - methods
Visible and ultraviolet spectra
title Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanometer%20Scale%20Spectral%20Imaging%20of%20Quantum%20Emitters%20in%20Nanowires%20and%20Its%20Correlation%20to%20Their%20Atomically%20Resolved%20Structure&rft.jtitle=Nano%20letters&rft.au=Zagonel,%20Luiz%20Fernando&rft.date=2011-02-09&rft.volume=11&rft.issue=2&rft.spage=568&rft.epage=573&rft.pages=568-573&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl103549t&rft_dat=%3Cproquest_hal_p%3E856765427%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a413t-d441af3d1db58098dfff66f846b2c3f40ca67f57064f1ec046999961d3632e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856765427&rft_id=info:pmid/21182283&rfr_iscdi=true