Loading…
Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation
Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biominera...
Saved in:
Published in: | Geochimica et cosmochimica acta 2014-08, Vol.139, p.327-343 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a529t-670a5723451cb7e8d62494a5c691815139be7498bea0edd1a047d68c33ebe3b83 |
---|---|
cites | cdi_FETCH-LOGICAL-a529t-670a5723451cb7e8d62494a5c691815139be7498bea0edd1a047d68c33ebe3b83 |
container_end_page | 343 |
container_issue | |
container_start_page | 327 |
container_title | Geochimica et cosmochimica acta |
container_volume | 139 |
creator | Miot, Jennyfer Li, Jinhua Benzerara, Karim Sougrati, Moulay Tahar Ona-Nguema, Georges Bernard, Sylvain Jumas, Jean-Claude Guyot, François |
description | Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4months vs. 2days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase biomineralization that is not specific of Fe bio-reduction, but can also result from Fe bio-oxidation. |
doi_str_mv | 10.1016/j.gca.2014.04.047 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01016121v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703714003159</els_id><sourcerecordid>1685839736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529t-670a5723451cb7e8d62494a5c691815139be7498bea0edd1a047d68c33ebe3b83</originalsourceid><addsrcrecordid>eNqFkcGKFDEQhoO44Di7D-AtRz30mHQ6nTSelsV1hQEv7jlUJzVjhu5kTDKLe_Dd7dDqUaGgivD9Vam_CHnD2Y4z3r8_7Y4Wdi3j3Y7VUC_IhmvVNoMU4iXZsAVqFBPqFXmd84kxpqRkG_LzPqYZio-BxgPNPhwnpC7O4AOd4Riw-IJ0fKbHhBhouuRC4w_vVsk5xTkWdBWYvU1x9DBRCIC1tDT4kqBg4_CMwWEo1Kc66U-Da3J1gCnjze-8JY_3H7_ePTT7L58-393uG5DtUJpeMZCqFZ3kdlSoXd92QwfS9gPXXHIxjKi6QY8IDJ3jsOzvem2FwBHFqMWWvFv7foPJnJOfIT2bCN483O5NfWPVRN7yJ76wb1d2We77BXMxs88WpwkCxks2vNdSi0GJ_v-olEOvtVzgLeErupiUc8LD329wZupwczLLBU29oGE1qubDqsHFmiePyWTrMVh0PqEtxkX_D_Uv3Makkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559688597</pqid></control><display><type>article</type><title>Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation</title><source>ScienceDirect Journals</source><creator>Miot, Jennyfer ; Li, Jinhua ; Benzerara, Karim ; Sougrati, Moulay Tahar ; Ona-Nguema, Georges ; Bernard, Sylvain ; Jumas, Jean-Claude ; Guyot, François</creator><creatorcontrib>Miot, Jennyfer ; Li, Jinhua ; Benzerara, Karim ; Sougrati, Moulay Tahar ; Ona-Nguema, Georges ; Bernard, Sylvain ; Jumas, Jean-Claude ; Guyot, François</creatorcontrib><description>Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4months vs. 2days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase biomineralization that is not specific of Fe bio-reduction, but can also result from Fe bio-oxidation.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2014.04.047</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acidovorax ; Bacteria ; Biomineralization ; Chemical Sciences ; Earth Sciences ; Geochemistry ; Green rust ; Inorganic chemistry ; Iron ; Magnetite ; Oxidation ; Scanning electron microscopy ; Sciences of the Universe ; Texture</subject><ispartof>Geochimica et cosmochimica acta, 2014-08, Vol.139, p.327-343</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a529t-670a5723451cb7e8d62494a5c691815139be7498bea0edd1a047d68c33ebe3b83</citedby><cites>FETCH-LOGICAL-a529t-670a5723451cb7e8d62494a5c691815139be7498bea0edd1a047d68c33ebe3b83</cites><orcidid>0000-0002-0553-0137 ; 0000-0003-1724-1583 ; 0000-0003-4622-2218 ; 0000-0003-3740-2807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01016121$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Miot, Jennyfer</creatorcontrib><creatorcontrib>Li, Jinhua</creatorcontrib><creatorcontrib>Benzerara, Karim</creatorcontrib><creatorcontrib>Sougrati, Moulay Tahar</creatorcontrib><creatorcontrib>Ona-Nguema, Georges</creatorcontrib><creatorcontrib>Bernard, Sylvain</creatorcontrib><creatorcontrib>Jumas, Jean-Claude</creatorcontrib><creatorcontrib>Guyot, François</creatorcontrib><title>Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation</title><title>Geochimica et cosmochimica acta</title><description>Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4months vs. 2days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase biomineralization that is not specific of Fe bio-reduction, but can also result from Fe bio-oxidation.</description><subject>Acidovorax</subject><subject>Bacteria</subject><subject>Biomineralization</subject><subject>Chemical Sciences</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Green rust</subject><subject>Inorganic chemistry</subject><subject>Iron</subject><subject>Magnetite</subject><subject>Oxidation</subject><subject>Scanning electron microscopy</subject><subject>Sciences of the Universe</subject><subject>Texture</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcGKFDEQhoO44Di7D-AtRz30mHQ6nTSelsV1hQEv7jlUJzVjhu5kTDKLe_Dd7dDqUaGgivD9Vam_CHnD2Y4z3r8_7Y4Wdi3j3Y7VUC_IhmvVNoMU4iXZsAVqFBPqFXmd84kxpqRkG_LzPqYZio-BxgPNPhwnpC7O4AOd4Riw-IJ0fKbHhBhouuRC4w_vVsk5xTkWdBWYvU1x9DBRCIC1tDT4kqBg4_CMwWEo1Kc66U-Da3J1gCnjze-8JY_3H7_ePTT7L58-393uG5DtUJpeMZCqFZ3kdlSoXd92QwfS9gPXXHIxjKi6QY8IDJ3jsOzvem2FwBHFqMWWvFv7foPJnJOfIT2bCN483O5NfWPVRN7yJ76wb1d2We77BXMxs88WpwkCxks2vNdSi0GJ_v-olEOvtVzgLeErupiUc8LD329wZupwczLLBU29oGE1qubDqsHFmiePyWTrMVh0PqEtxkX_D_Uv3Makkg</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Miot, Jennyfer</creator><creator>Li, Jinhua</creator><creator>Benzerara, Karim</creator><creator>Sougrati, Moulay Tahar</creator><creator>Ona-Nguema, Georges</creator><creator>Bernard, Sylvain</creator><creator>Jumas, Jean-Claude</creator><creator>Guyot, François</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>7TV</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0553-0137</orcidid><orcidid>https://orcid.org/0000-0003-1724-1583</orcidid><orcidid>https://orcid.org/0000-0003-4622-2218</orcidid><orcidid>https://orcid.org/0000-0003-3740-2807</orcidid></search><sort><creationdate>20140815</creationdate><title>Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation</title><author>Miot, Jennyfer ; Li, Jinhua ; Benzerara, Karim ; Sougrati, Moulay Tahar ; Ona-Nguema, Georges ; Bernard, Sylvain ; Jumas, Jean-Claude ; Guyot, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529t-670a5723451cb7e8d62494a5c691815139be7498bea0edd1a047d68c33ebe3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acidovorax</topic><topic>Bacteria</topic><topic>Biomineralization</topic><topic>Chemical Sciences</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Green rust</topic><topic>Inorganic chemistry</topic><topic>Iron</topic><topic>Magnetite</topic><topic>Oxidation</topic><topic>Scanning electron microscopy</topic><topic>Sciences of the Universe</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miot, Jennyfer</creatorcontrib><creatorcontrib>Li, Jinhua</creatorcontrib><creatorcontrib>Benzerara, Karim</creatorcontrib><creatorcontrib>Sougrati, Moulay Tahar</creatorcontrib><creatorcontrib>Ona-Nguema, Georges</creatorcontrib><creatorcontrib>Bernard, Sylvain</creatorcontrib><creatorcontrib>Jumas, Jean-Claude</creatorcontrib><creatorcontrib>Guyot, François</creatorcontrib><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miot, Jennyfer</au><au>Li, Jinhua</au><au>Benzerara, Karim</au><au>Sougrati, Moulay Tahar</au><au>Ona-Nguema, Georges</au><au>Bernard, Sylvain</au><au>Jumas, Jean-Claude</au><au>Guyot, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>139</volume><spage>327</spage><epage>343</epage><pages>327-343</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4months vs. 2days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase biomineralization that is not specific of Fe bio-reduction, but can also result from Fe bio-oxidation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2014.04.047</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0553-0137</orcidid><orcidid>https://orcid.org/0000-0003-1724-1583</orcidid><orcidid>https://orcid.org/0000-0003-4622-2218</orcidid><orcidid>https://orcid.org/0000-0003-3740-2807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7037 |
ispartof | Geochimica et cosmochimica acta, 2014-08, Vol.139, p.327-343 |
issn | 0016-7037 1872-9533 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01016121v1 |
source | ScienceDirect Journals |
subjects | Acidovorax Bacteria Biomineralization Chemical Sciences Earth Sciences Geochemistry Green rust Inorganic chemistry Iron Magnetite Oxidation Scanning electron microscopy Sciences of the Universe Texture |
title | Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20single%20domain%20magnetite%20by%20green%20rust%20oxidation%20promoted%20by%20microbial%20anaerobic%20nitrate-dependent%20iron%20oxidation&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Miot,%20Jennyfer&rft.date=2014-08-15&rft.volume=139&rft.spage=327&rft.epage=343&rft.pages=327-343&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2014.04.047&rft_dat=%3Cproquest_hal_p%3E1685839736%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529t-670a5723451cb7e8d62494a5c691815139be7498bea0edd1a047d68c33ebe3b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559688597&rft_id=info:pmid/&rfr_iscdi=true |