Loading…

Antimicrobial Peptides Keep Insect Endosymbionts Under Control

Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2011-10, Vol.334 (6054), p.362-365
Main Authors: Login, Frédéric H., Balmand, Séverine, Vallier, Agnès, Vincent-Monégat, Carole, Vigneron, Aurélien, Weiss-Gayet, Michèle, Rochat, Didier, Heddi, Abdelaziz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-169a1fd8cecc9836356894df24834aad6d7413468867c6978a3695f9e1ad696a3
cites cdi_FETCH-LOGICAL-c507t-169a1fd8cecc9836356894df24834aad6d7413468867c6978a3695f9e1ad696a3
container_end_page 365
container_issue 6054
container_start_page 362
container_title Science (American Association for the Advancement of Science)
container_volume 334
creator Login, Frédéric H.
Balmand, Séverine
Vallier, Agnès
Vincent-Monégat, Carole
Vigneron, Aurélien
Weiss-Gayet, Michèle
Rochat, Didier
Heddi, Abdelaziz
description Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial peptide selectively targets endosymbionts within the bacteriocytes and regulates their growth through the inhibition of cell division. Silencing the colA gene with RNA interference resulted in a decrease in size of the giant filamentous endosymbionts, which escaped from the bacteriocytes and spread into insect tissues. Although this family of peptides is commonly linked with microbe clearance, this work shows that endosymbiosis benefits from ColA, suggesting that long-term host-symbiont coevolution might have shaped immune effectors for symbiont maintenance.
doi_str_mv 10.1126/science.1209728
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01018984v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23059351</jstor_id><sourcerecordid>23059351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-169a1fd8cecc9836356894df24834aad6d7413468867c6978a3695f9e1ad696a3</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_AgFd1qz55aBqGUHkZfJr8vwrLYKi7oQc8hm8lglplkm8wK_vfNdqcKvfSUkPdJ8pIvQmcYLjBu-GW23gXrLnADSjTyAM0wKFarBsgHNAMgvJYg2DH6mPMaoNQUOULHTQMNlozN0NU8jH7wNsWVN3314Dajb12u7pzbVLchOztW16GN-XVY-RjGXD2F1qVqUeYp9qfosDN9dp-m8QQ9_bh-XNzUy_uft4v5srYMxFhjrgzuWmmdtUoSThiXirZdQyWhxrS8FRQTyqXkwnIlpCFcsU45XGqKG3KCvu_PfTa93iQ_mPSqo_H6Zr7UuzXAgKWS9AUX-21vNyn-2ro86sFn6_reBBe3WSssgQpM2f8lAC-NwE6e_yPXcZtCebKWSnFCCZEFXe5R-c2ck-veOsWgd3HpKS49xVV2fJmO3a4G1775v_kU8HUCJlvTd8kE6_O7owKE_HP1571b5zGm9zqBEjjD5Dcvv6UT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899634338</pqid></control><display><type>article</type><title>Antimicrobial Peptides Keep Insect Endosymbionts Under Control</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Login, Frédéric H. ; Balmand, Séverine ; Vallier, Agnès ; Vincent-Monégat, Carole ; Vigneron, Aurélien ; Weiss-Gayet, Michèle ; Rochat, Didier ; Heddi, Abdelaziz</creator><creatorcontrib>Login, Frédéric H. ; Balmand, Séverine ; Vallier, Agnès ; Vincent-Monégat, Carole ; Vigneron, Aurélien ; Weiss-Gayet, Michèle ; Rochat, Didier ; Heddi, Abdelaziz</creatorcontrib><description>Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial peptide selectively targets endosymbionts within the bacteriocytes and regulates their growth through the inhibition of cell division. Silencing the colA gene with RNA interference resulted in a decrease in size of the giant filamentous endosymbionts, which escaped from the bacteriocytes and spread into insect tissues. Although this family of peptides is commonly linked with microbe clearance, this work shows that endosymbiosis benefits from ColA, suggesting that long-term host-symbiont coevolution might have shaped immune effectors for symbiont maintenance.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1209728</identifier><identifier>PMID: 22021855</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Antimicrobials ; Autoecology ; Bacteria ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial Proteins - metabolism ; Bacteriocytes ; Biological and medical sciences ; Cellular Biology ; Chaperonin 60 - genetics ; Chaperonin 60 - metabolism ; Cytoplasm - metabolism ; Endosymbionts ; Epithelial cells ; Epithelial Cells - metabolism ; Escherichia coli - cytology ; Escherichia coli - drug effects ; Fat body ; Fat Body - metabolism ; Fundamental and applied biological sciences. Psychology ; Gammaproteobacteria - cytology ; Gammaproteobacteria - drug effects ; Gammaproteobacteria - metabolism ; Gammaproteobacteria - physiology ; Genomes ; Insect genetics ; Insect larvae ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Insect Proteins - pharmacology ; Insects ; Life Sciences ; Microbial corrosion ; Micrococcus luteus - drug effects ; Oocytes - metabolism ; Peptides ; Protozoa. Invertebrata ; RNA Interference ; Saccharomyces cerevisiae - drug effects ; Symbiosis ; Weevils ; Weevils - cytology ; Weevils - metabolism ; Weevils - microbiology</subject><ispartof>Science (American Association for the Advancement of Science), 2011-10, Vol.334 (6054), p.362-365</ispartof><rights>Copyright © 2011 The American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-169a1fd8cecc9836356894df24834aad6d7413468867c6978a3695f9e1ad696a3</citedby><cites>FETCH-LOGICAL-c507t-169a1fd8cecc9836356894df24834aad6d7413468867c6978a3695f9e1ad696a3</cites><orcidid>0000-0002-1909-3556 ; 0000-0003-4986-6465 ; 0000-0001-6377-5573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24707838$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22021855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01018984$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Login, Frédéric H.</creatorcontrib><creatorcontrib>Balmand, Séverine</creatorcontrib><creatorcontrib>Vallier, Agnès</creatorcontrib><creatorcontrib>Vincent-Monégat, Carole</creatorcontrib><creatorcontrib>Vigneron, Aurélien</creatorcontrib><creatorcontrib>Weiss-Gayet, Michèle</creatorcontrib><creatorcontrib>Rochat, Didier</creatorcontrib><creatorcontrib>Heddi, Abdelaziz</creatorcontrib><title>Antimicrobial Peptides Keep Insect Endosymbionts Under Control</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial peptide selectively targets endosymbionts within the bacteriocytes and regulates their growth through the inhibition of cell division. Silencing the colA gene with RNA interference resulted in a decrease in size of the giant filamentous endosymbionts, which escaped from the bacteriocytes and spread into insect tissues. Although this family of peptides is commonly linked with microbe clearance, this work shows that endosymbiosis benefits from ColA, suggesting that long-term host-symbiont coevolution might have shaped immune effectors for symbiont maintenance.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Antimicrobials</subject><subject>Autoecology</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriocytes</subject><subject>Biological and medical sciences</subject><subject>Cellular Biology</subject><subject>Chaperonin 60 - genetics</subject><subject>Chaperonin 60 - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Endosymbionts</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - drug effects</subject><subject>Fat body</subject><subject>Fat Body - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gammaproteobacteria - cytology</subject><subject>Gammaproteobacteria - drug effects</subject><subject>Gammaproteobacteria - metabolism</subject><subject>Gammaproteobacteria - physiology</subject><subject>Genomes</subject><subject>Insect genetics</subject><subject>Insect larvae</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Insect Proteins - pharmacology</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Microbial corrosion</subject><subject>Micrococcus luteus - drug effects</subject><subject>Oocytes - metabolism</subject><subject>Peptides</subject><subject>Protozoa. Invertebrata</subject><subject>RNA Interference</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Symbiosis</subject><subject>Weevils</subject><subject>Weevils - cytology</subject><subject>Weevils - metabolism</subject><subject>Weevils - microbiology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LHDEUB_AgFd1qz55aBqGUHkZfJr8vwrLYKi7oQc8hm8lglplkm8wK_vfNdqcKvfSUkPdJ8pIvQmcYLjBu-GW23gXrLnADSjTyAM0wKFarBsgHNAMgvJYg2DH6mPMaoNQUOULHTQMNlozN0NU8jH7wNsWVN3314Dajb12u7pzbVLchOztW16GN-XVY-RjGXD2F1qVqUeYp9qfosDN9dp-m8QQ9_bh-XNzUy_uft4v5srYMxFhjrgzuWmmdtUoSThiXirZdQyWhxrS8FRQTyqXkwnIlpCFcsU45XGqKG3KCvu_PfTa93iQ_mPSqo_H6Zr7UuzXAgKWS9AUX-21vNyn-2ro86sFn6_reBBe3WSssgQpM2f8lAC-NwE6e_yPXcZtCebKWSnFCCZEFXe5R-c2ck-veOsWgd3HpKS49xVV2fJmO3a4G1775v_kU8HUCJlvTd8kE6_O7owKE_HP1571b5zGm9zqBEjjD5Dcvv6UT</recordid><startdate>20111021</startdate><enddate>20111021</enddate><creator>Login, Frédéric H.</creator><creator>Balmand, Séverine</creator><creator>Vallier, Agnès</creator><creator>Vincent-Monégat, Carole</creator><creator>Vigneron, Aurélien</creator><creator>Weiss-Gayet, Michèle</creator><creator>Rochat, Didier</creator><creator>Heddi, Abdelaziz</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1909-3556</orcidid><orcidid>https://orcid.org/0000-0003-4986-6465</orcidid><orcidid>https://orcid.org/0000-0001-6377-5573</orcidid></search><sort><creationdate>20111021</creationdate><title>Antimicrobial Peptides Keep Insect Endosymbionts Under Control</title><author>Login, Frédéric H. ; Balmand, Séverine ; Vallier, Agnès ; Vincent-Monégat, Carole ; Vigneron, Aurélien ; Weiss-Gayet, Michèle ; Rochat, Didier ; Heddi, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-169a1fd8cecc9836356894df24834aad6d7413468867c6978a3695f9e1ad696a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Antimicrobials</topic><topic>Autoecology</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriocytes</topic><topic>Biological and medical sciences</topic><topic>Cellular Biology</topic><topic>Chaperonin 60 - genetics</topic><topic>Chaperonin 60 - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Endosymbionts</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - drug effects</topic><topic>Fat body</topic><topic>Fat Body - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gammaproteobacteria - cytology</topic><topic>Gammaproteobacteria - drug effects</topic><topic>Gammaproteobacteria - metabolism</topic><topic>Gammaproteobacteria - physiology</topic><topic>Genomes</topic><topic>Insect genetics</topic><topic>Insect larvae</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Insect Proteins - pharmacology</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Microbial corrosion</topic><topic>Micrococcus luteus - drug effects</topic><topic>Oocytes - metabolism</topic><topic>Peptides</topic><topic>Protozoa. Invertebrata</topic><topic>RNA Interference</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Symbiosis</topic><topic>Weevils</topic><topic>Weevils - cytology</topic><topic>Weevils - metabolism</topic><topic>Weevils - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Login, Frédéric H.</creatorcontrib><creatorcontrib>Balmand, Séverine</creatorcontrib><creatorcontrib>Vallier, Agnès</creatorcontrib><creatorcontrib>Vincent-Monégat, Carole</creatorcontrib><creatorcontrib>Vigneron, Aurélien</creatorcontrib><creatorcontrib>Weiss-Gayet, Michèle</creatorcontrib><creatorcontrib>Rochat, Didier</creatorcontrib><creatorcontrib>Heddi, Abdelaziz</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Login, Frédéric H.</au><au>Balmand, Séverine</au><au>Vallier, Agnès</au><au>Vincent-Monégat, Carole</au><au>Vigneron, Aurélien</au><au>Weiss-Gayet, Michèle</au><au>Rochat, Didier</au><au>Heddi, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial Peptides Keep Insect Endosymbionts Under Control</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-10-21</date><risdate>2011</risdate><volume>334</volume><issue>6054</issue><spage>362</spage><epage>365</epage><pages>362-365</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Vertically transmitted endosymbionts persist for millions of years in invertebrates and play an important role in animal evolution. However, the functional basis underlying the maintenance of these long-term resident bacteria is unknown. We report that the weevil coleoptericin-A (ColA) antimicrobial peptide selectively targets endosymbionts within the bacteriocytes and regulates their growth through the inhibition of cell division. Silencing the colA gene with RNA interference resulted in a decrease in size of the giant filamentous endosymbionts, which escaped from the bacteriocytes and spread into insect tissues. Although this family of peptides is commonly linked with microbe clearance, this work shows that endosymbiosis benefits from ColA, suggesting that long-term host-symbiont coevolution might have shaped immune effectors for symbiont maintenance.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>22021855</pmid><doi>10.1126/science.1209728</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1909-3556</orcidid><orcidid>https://orcid.org/0000-0003-4986-6465</orcidid><orcidid>https://orcid.org/0000-0001-6377-5573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2011-10, Vol.334 (6054), p.362-365
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_01018984v1
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Animal and plant ecology
Animal, plant and microbial ecology
Animals
Antimicrobials
Autoecology
Bacteria
Bacterial Outer Membrane Proteins - metabolism
Bacterial Proteins - metabolism
Bacteriocytes
Biological and medical sciences
Cellular Biology
Chaperonin 60 - genetics
Chaperonin 60 - metabolism
Cytoplasm - metabolism
Endosymbionts
Epithelial cells
Epithelial Cells - metabolism
Escherichia coli - cytology
Escherichia coli - drug effects
Fat body
Fat Body - metabolism
Fundamental and applied biological sciences. Psychology
Gammaproteobacteria - cytology
Gammaproteobacteria - drug effects
Gammaproteobacteria - metabolism
Gammaproteobacteria - physiology
Genomes
Insect genetics
Insect larvae
Insect Proteins - genetics
Insect Proteins - metabolism
Insect Proteins - pharmacology
Insects
Life Sciences
Microbial corrosion
Micrococcus luteus - drug effects
Oocytes - metabolism
Peptides
Protozoa. Invertebrata
RNA Interference
Saccharomyces cerevisiae - drug effects
Symbiosis
Weevils
Weevils - cytology
Weevils - metabolism
Weevils - microbiology
title Antimicrobial Peptides Keep Insect Endosymbionts Under Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20Peptides%20Keep%20Insect%20Endosymbionts%20Under%20Control&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Login,%20Fr%C3%A9d%C3%A9ric%20H.&rft.date=2011-10-21&rft.volume=334&rft.issue=6054&rft.spage=362&rft.epage=365&rft.pages=362-365&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1209728&rft_dat=%3Cjstor_hal_p%3E23059351%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-169a1fd8cecc9836356894df24834aad6d7413468867c6978a3695f9e1ad696a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=899634338&rft_id=info:pmid/22021855&rft_jstor_id=23059351&rfr_iscdi=true