Loading…

The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation

The Generalized Empirical Interpolation Method (GEIM) is an extension first presented by Maday and Mula in Maday and Mula (2013) in 2013 of the classical empirical interpolation method (presented in 2004 by Barrault, Maday, Nguyen and Patera in Barrault et al. (2004)) where the evaluation at interpo...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2015-04, Vol.287, p.310-334
Main Authors: Maday, Y., Mula, O., Patera, A.T., Yano, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-1b36ff9e0adfdc96e255c30e6c0e4fc122a55b3e5536fc99592b5468339ac20d3
cites cdi_FETCH-LOGICAL-c407t-1b36ff9e0adfdc96e255c30e6c0e4fc122a55b3e5536fc99592b5468339ac20d3
container_end_page 334
container_issue
container_start_page 310
container_title Computer methods in applied mechanics and engineering
container_volume 287
creator Maday, Y.
Mula, O.
Patera, A.T.
Yano, M.
description The Generalized Empirical Interpolation Method (GEIM) is an extension first presented by Maday and Mula in Maday and Mula (2013) in 2013 of the classical empirical interpolation method (presented in 2004 by Barrault, Maday, Nguyen and Patera in Barrault et al. (2004)) where the evaluation at interpolating points is replaced by the more practical evaluation at interpolating continuous linear functionals on a class of Banach spaces. As outlined in Maday and Mula (2013), this allows to relax the continuity constraint in the target functions and expand both the application domain and the stability of the approach. In this paper, we present a thorough analysis of the concept of stability condition of the generalized interpolant (the Lebesgue constant) by relating it to an inf–sup problem in the case of Hilbert spaces. In the second part of the paper, it will be explained how GEIM can be employed to monitor in real time physical experiments by providing an online accurate approximation of the phenomenon that is computed by combining the acquisition of a minimal number, optimally placed, measurements from the processes with their mathematical models (parameter-dependent PDEs). This idea is illustrated through a parameter dependent Stokes problem in which it is shown that the pressure and velocity fields can efficiently be reconstructed with a relatively low-dimensional interpolation space.
doi_str_mv 10.1016/j.cma.2015.01.018
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01032168v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782515000389</els_id><sourcerecordid>1709758654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-1b36ff9e0adfdc96e255c30e6c0e4fc122a55b3e5536fc99592b5468339ac20d3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouP75AN5y1EPXJG3aVE8i6gorHtRzSNMpzZptapJVVvC7m3XFo8PAwOT33hAeQieUTCmh5fliqpdqygjlU0JTix00oaKqM0ZzsYsmhBQ8qwTj--gghAVJJSiboK_nHvAdDOCVNZ_Q4pvlaLzRyuL7IYIfnVXRuAE_QOxde4GfomqMNXGNYw_Or3F6mxnbgI84jEpDwB8m9lgNWI2jTU4_8ug2fFK710TA2-pnfYT2OmUDHP_OQ_Rye_N8Pcvmj3f311fzTBekihlt8rLraiCq7Vpdl8A41zmBUhMoOk0ZU5w3OXCeOF3XvGYNL0qR57XSjLT5ITrb-vbKytGbpfJr6ZSRs6u53OwIJTmjpXhniT3dsqN3bysIUS5N0GCtGsCtgqQVqSsuSl4klG5R7V0IHro_b0rkJha5kCkWuYklnUgtkuZyq4H033cDXgZtYNDQGg86ytaZf9Tfq72Wcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709758654</pqid></control><display><type>article</type><title>The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation</title><source>Elsevier</source><creator>Maday, Y. ; Mula, O. ; Patera, A.T. ; Yano, M.</creator><creatorcontrib>Maday, Y. ; Mula, O. ; Patera, A.T. ; Yano, M.</creatorcontrib><description>The Generalized Empirical Interpolation Method (GEIM) is an extension first presented by Maday and Mula in Maday and Mula (2013) in 2013 of the classical empirical interpolation method (presented in 2004 by Barrault, Maday, Nguyen and Patera in Barrault et al. (2004)) where the evaluation at interpolating points is replaced by the more practical evaluation at interpolating continuous linear functionals on a class of Banach spaces. As outlined in Maday and Mula (2013), this allows to relax the continuity constraint in the target functions and expand both the application domain and the stability of the approach. In this paper, we present a thorough analysis of the concept of stability condition of the generalized interpolant (the Lebesgue constant) by relating it to an inf–sup problem in the case of Hilbert spaces. In the second part of the paper, it will be explained how GEIM can be employed to monitor in real time physical experiments by providing an online accurate approximation of the phenomenon that is computed by combining the acquisition of a minimal number, optimally placed, measurements from the processes with their mathematical models (parameter-dependent PDEs). This idea is illustrated through a parameter dependent Stokes problem in which it is shown that the pressure and velocity fields can efficiently be reconstructed with a relatively low-dimensional interpolation space.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2015.01.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Constants ; Empirical analysis ; Empirical interpolation ; Fluid flow ; General Mathematics ; Generalized empirical interpolation ; Hilbert space ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Model order reduction ; Reduced basis ; Stability ; Stokes equations</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-04, Vol.287, p.310-334</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-1b36ff9e0adfdc96e255c30e6c0e4fc122a55b3e5536fc99592b5468339ac20d3</citedby><cites>FETCH-LOGICAL-c407t-1b36ff9e0adfdc96e255c30e6c0e4fc122a55b3e5536fc99592b5468339ac20d3</cites><orcidid>0000-0002-3017-6598 ; 0000-0002-0443-6544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01032168$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maday, Y.</creatorcontrib><creatorcontrib>Mula, O.</creatorcontrib><creatorcontrib>Patera, A.T.</creatorcontrib><creatorcontrib>Yano, M.</creatorcontrib><title>The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation</title><title>Computer methods in applied mechanics and engineering</title><description>The Generalized Empirical Interpolation Method (GEIM) is an extension first presented by Maday and Mula in Maday and Mula (2013) in 2013 of the classical empirical interpolation method (presented in 2004 by Barrault, Maday, Nguyen and Patera in Barrault et al. (2004)) where the evaluation at interpolating points is replaced by the more practical evaluation at interpolating continuous linear functionals on a class of Banach spaces. As outlined in Maday and Mula (2013), this allows to relax the continuity constraint in the target functions and expand both the application domain and the stability of the approach. In this paper, we present a thorough analysis of the concept of stability condition of the generalized interpolant (the Lebesgue constant) by relating it to an inf–sup problem in the case of Hilbert spaces. In the second part of the paper, it will be explained how GEIM can be employed to monitor in real time physical experiments by providing an online accurate approximation of the phenomenon that is computed by combining the acquisition of a minimal number, optimally placed, measurements from the processes with their mathematical models (parameter-dependent PDEs). This idea is illustrated through a parameter dependent Stokes problem in which it is shown that the pressure and velocity fields can efficiently be reconstructed with a relatively low-dimensional interpolation space.</description><subject>Constants</subject><subject>Empirical analysis</subject><subject>Empirical interpolation</subject><subject>Fluid flow</subject><subject>General Mathematics</subject><subject>Generalized empirical interpolation</subject><subject>Hilbert space</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Model order reduction</subject><subject>Reduced basis</subject><subject>Stability</subject><subject>Stokes equations</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYMouP75AN5y1EPXJG3aVE8i6gorHtRzSNMpzZptapJVVvC7m3XFo8PAwOT33hAeQieUTCmh5fliqpdqygjlU0JTix00oaKqM0ZzsYsmhBQ8qwTj--gghAVJJSiboK_nHvAdDOCVNZ_Q4pvlaLzRyuL7IYIfnVXRuAE_QOxde4GfomqMNXGNYw_Or3F6mxnbgI84jEpDwB8m9lgNWI2jTU4_8ug2fFK710TA2-pnfYT2OmUDHP_OQ_Rye_N8Pcvmj3f311fzTBekihlt8rLraiCq7Vpdl8A41zmBUhMoOk0ZU5w3OXCeOF3XvGYNL0qR57XSjLT5ITrb-vbKytGbpfJr6ZSRs6u53OwIJTmjpXhniT3dsqN3bysIUS5N0GCtGsCtgqQVqSsuSl4klG5R7V0IHro_b0rkJha5kCkWuYklnUgtkuZyq4H033cDXgZtYNDQGg86ytaZf9Tfq72Wcg</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Maday, Y.</creator><creator>Mula, O.</creator><creator>Patera, A.T.</creator><creator>Yano, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3017-6598</orcidid><orcidid>https://orcid.org/0000-0002-0443-6544</orcidid></search><sort><creationdate>20150415</creationdate><title>The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation</title><author>Maday, Y. ; Mula, O. ; Patera, A.T. ; Yano, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-1b36ff9e0adfdc96e255c30e6c0e4fc122a55b3e5536fc99592b5468339ac20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Constants</topic><topic>Empirical analysis</topic><topic>Empirical interpolation</topic><topic>Fluid flow</topic><topic>General Mathematics</topic><topic>Generalized empirical interpolation</topic><topic>Hilbert space</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Model order reduction</topic><topic>Reduced basis</topic><topic>Stability</topic><topic>Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maday, Y.</creatorcontrib><creatorcontrib>Mula, O.</creatorcontrib><creatorcontrib>Patera, A.T.</creatorcontrib><creatorcontrib>Yano, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maday, Y.</au><au>Mula, O.</au><au>Patera, A.T.</au><au>Yano, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2015-04-15</date><risdate>2015</risdate><volume>287</volume><spage>310</spage><epage>334</epage><pages>310-334</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>The Generalized Empirical Interpolation Method (GEIM) is an extension first presented by Maday and Mula in Maday and Mula (2013) in 2013 of the classical empirical interpolation method (presented in 2004 by Barrault, Maday, Nguyen and Patera in Barrault et al. (2004)) where the evaluation at interpolating points is replaced by the more practical evaluation at interpolating continuous linear functionals on a class of Banach spaces. As outlined in Maday and Mula (2013), this allows to relax the continuity constraint in the target functions and expand both the application domain and the stability of the approach. In this paper, we present a thorough analysis of the concept of stability condition of the generalized interpolant (the Lebesgue constant) by relating it to an inf–sup problem in the case of Hilbert spaces. In the second part of the paper, it will be explained how GEIM can be employed to monitor in real time physical experiments by providing an online accurate approximation of the phenomenon that is computed by combining the acquisition of a minimal number, optimally placed, measurements from the processes with their mathematical models (parameter-dependent PDEs). This idea is illustrated through a parameter dependent Stokes problem in which it is shown that the pressure and velocity fields can efficiently be reconstructed with a relatively low-dimensional interpolation space.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2015.01.018</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3017-6598</orcidid><orcidid>https://orcid.org/0000-0002-0443-6544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2015-04, Vol.287, p.310-334
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01032168v2
source Elsevier
subjects Constants
Empirical analysis
Empirical interpolation
Fluid flow
General Mathematics
Generalized empirical interpolation
Hilbert space
Interpolation
Mathematical analysis
Mathematical models
Mathematics
Model order reduction
Reduced basis
Stability
Stokes equations
title The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20Empirical%20Interpolation%20Method:%20Stability%20theory%20on%20Hilbert%20spaces%20with%20an%20application%20to%20the%20Stokes%20equation&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Maday,%20Y.&rft.date=2015-04-15&rft.volume=287&rft.spage=310&rft.epage=334&rft.pages=310-334&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2015.01.018&rft_dat=%3Cproquest_hal_p%3E1709758654%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-1b36ff9e0adfdc96e255c30e6c0e4fc122a55b3e5536fc99592b5468339ac20d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709758654&rft_id=info:pmid/&rfr_iscdi=true