Loading…

Diagnostic tools for approximate Bayesian computation using the coverage property

Summary Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then acce...

Full description

Saved in:
Bibliographic Details
Published in:Australian & New Zealand journal of statistics 2014-12, Vol.56 (4), p.309-329
Main Authors: Prangle, D., Blum, M. G. B., Popovic, G., Sisson, S. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863
cites cdi_FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863
container_end_page 329
container_issue 4
container_start_page 309
container_title Australian & New Zealand journal of statistics
container_volume 56
creator Prangle, D.
Blum, M. G. B.
Popovic, G.
Sisson, S. A.
description Summary Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then accepting as samples from the approximate posterior, those model and parameter pairs for which the corresponding dataset, or a summary of that dataset, is ‘close’ to the observed data. Closeness is typically determined though a distance measure and a kernel scale parameter. Appropriate choice of that parameter is important in producing a good quality approximation. This paper proposes diagnostic tools for the choice of the kernel scale parameter based on assessing the coverage property, which asserts that credible intervals have the correct coverage levels in appropriately designed simulation settings. We provide theoretical results on coverage for both model and parameter inference, and adapt these into diagnostics for the ABC context. We re‐analyse a study on human demographic history to determine whether the adopted posterior approximation was appropriate. Code implementing the proposed methodology is freely available in the R package abctools.
doi_str_mv 10.1111/anzs.12087
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01053022v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660058391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxSNEpcKWSz9Bji1SwBM7dva4_EdaUSpoF3GxBneyuM3GwfYCy6evlxSOncuMnn5v9PSy7DOwPUizj91L2IOS1Woj2wIhVVGL8mYz3VyOCxCKf8y2Q_jNGAjG5Vb2_cjivHMhWpNH59qQN87n2PfePdsFRsoPcEXBYpcbt-iXEaN1Xb4Mtpvn8Z6S-kge55QnR08-rj5lHxpsA-3826Psx8nx9eFZMf12en44mRaGq1oVAGhYdUeCaiFMxZj81dSAgJJAVSLpTFY4NoRgGtFIMJXEEsYoGqVULfko-zr8vcdW9z6F9Svt0OqzyVSvNQas4qwsHyGxXwY2hXxYUoh6YYOhtsWO3DJokJKxqubjNbo7oMa7EDw177-B6XXHet2xfu04wTDAT7al1X9IPbm4vXrzFIPHhkjP7x70f7RUXFV6dnGqr2aXJ9PZzU89438BkYCOyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660058391</pqid></control><display><type>article</type><title>Diagnostic tools for approximate Bayesian computation using the coverage property</title><source>Wiley:Jisc Collections:Wiley Read and Publish 2024-2025</source><creator>Prangle, D. ; Blum, M. G. B. ; Popovic, G. ; Sisson, S. A.</creator><creatorcontrib>Prangle, D. ; Blum, M. G. B. ; Popovic, G. ; Sisson, S. A.</creatorcontrib><description>Summary Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then accepting as samples from the approximate posterior, those model and parameter pairs for which the corresponding dataset, or a summary of that dataset, is ‘close’ to the observed data. Closeness is typically determined though a distance measure and a kernel scale parameter. Appropriate choice of that parameter is important in producing a good quality approximation. This paper proposes diagnostic tools for the choice of the kernel scale parameter based on assessing the coverage property, which asserts that credible intervals have the correct coverage levels in appropriately designed simulation settings. We provide theoretical results on coverage for both model and parameter inference, and adapt these into diagnostics for the ABC context. We re‐analyse a study on human demographic history to determine whether the adopted posterior approximation was appropriate. Code implementing the proposed methodology is freely available in the R package abctools.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/anzs.12087</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Approximation ; Bayesian analysis ; Computation ; Computer simulation ; Diagnostic software ; Genetics ; Kernels ; Life Sciences ; likelihood-free inference ; Mathematical analysis ; Mathematical models ; Mathematics ; model inference ; parameter inference ; Populations and Evolution ; Statistical methods ; Statistics ; Statistics Theory</subject><ispartof>Australian &amp; New Zealand journal of statistics, 2014-12, Vol.56 (4), p.309-329</ispartof><rights>2014 Australian Statistical Publishing Association Inc. Published by Wiley Publishing Asia Pty Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863</citedby><cites>FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://hal.science/hal-01053022$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Prangle, D.</creatorcontrib><creatorcontrib>Blum, M. G. B.</creatorcontrib><creatorcontrib>Popovic, G.</creatorcontrib><creatorcontrib>Sisson, S. A.</creatorcontrib><title>Diagnostic tools for approximate Bayesian computation using the coverage property</title><title>Australian &amp; New Zealand journal of statistics</title><addtitle>Aust. N. Z. J. Stat</addtitle><description>Summary Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then accepting as samples from the approximate posterior, those model and parameter pairs for which the corresponding dataset, or a summary of that dataset, is ‘close’ to the observed data. Closeness is typically determined though a distance measure and a kernel scale parameter. Appropriate choice of that parameter is important in producing a good quality approximation. This paper proposes diagnostic tools for the choice of the kernel scale parameter based on assessing the coverage property, which asserts that credible intervals have the correct coverage levels in appropriately designed simulation settings. We provide theoretical results on coverage for both model and parameter inference, and adapt these into diagnostics for the ABC context. We re‐analyse a study on human demographic history to determine whether the adopted posterior approximation was appropriate. Code implementing the proposed methodology is freely available in the R package abctools.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Diagnostic software</subject><subject>Genetics</subject><subject>Kernels</subject><subject>Life Sciences</subject><subject>likelihood-free inference</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>model inference</subject><subject>parameter inference</subject><subject>Populations and Evolution</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Statistics Theory</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxSNEpcKWSz9Bji1SwBM7dva4_EdaUSpoF3GxBneyuM3GwfYCy6evlxSOncuMnn5v9PSy7DOwPUizj91L2IOS1Woj2wIhVVGL8mYz3VyOCxCKf8y2Q_jNGAjG5Vb2_cjivHMhWpNH59qQN87n2PfePdsFRsoPcEXBYpcbt-iXEaN1Xb4Mtpvn8Z6S-kge55QnR08-rj5lHxpsA-3826Psx8nx9eFZMf12en44mRaGq1oVAGhYdUeCaiFMxZj81dSAgJJAVSLpTFY4NoRgGtFIMJXEEsYoGqVULfko-zr8vcdW9z6F9Svt0OqzyVSvNQas4qwsHyGxXwY2hXxYUoh6YYOhtsWO3DJokJKxqubjNbo7oMa7EDw177-B6XXHet2xfu04wTDAT7al1X9IPbm4vXrzFIPHhkjP7x70f7RUXFV6dnGqr2aXJ9PZzU89438BkYCOyA</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Prangle, D.</creator><creator>Blum, M. G. B.</creator><creator>Popovic, G.</creator><creator>Sisson, S. A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>201412</creationdate><title>Diagnostic tools for approximate Bayesian computation using the coverage property</title><author>Prangle, D. ; Blum, M. G. B. ; Popovic, G. ; Sisson, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Diagnostic software</topic><topic>Genetics</topic><topic>Kernels</topic><topic>Life Sciences</topic><topic>likelihood-free inference</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>model inference</topic><topic>parameter inference</topic><topic>Populations and Evolution</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Statistics Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prangle, D.</creatorcontrib><creatorcontrib>Blum, M. G. B.</creatorcontrib><creatorcontrib>Popovic, G.</creatorcontrib><creatorcontrib>Sisson, S. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Australian &amp; New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prangle, D.</au><au>Blum, M. G. B.</au><au>Popovic, G.</au><au>Sisson, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnostic tools for approximate Bayesian computation using the coverage property</atitle><jtitle>Australian &amp; New Zealand journal of statistics</jtitle><addtitle>Aust. N. Z. J. Stat</addtitle><date>2014-12</date><risdate>2014</risdate><volume>56</volume><issue>4</issue><spage>309</spage><epage>329</epage><pages>309-329</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then accepting as samples from the approximate posterior, those model and parameter pairs for which the corresponding dataset, or a summary of that dataset, is ‘close’ to the observed data. Closeness is typically determined though a distance measure and a kernel scale parameter. Appropriate choice of that parameter is important in producing a good quality approximation. This paper proposes diagnostic tools for the choice of the kernel scale parameter based on assessing the coverage property, which asserts that credible intervals have the correct coverage levels in appropriately designed simulation settings. We provide theoretical results on coverage for both model and parameter inference, and adapt these into diagnostics for the ABC context. We re‐analyse a study on human demographic history to determine whether the adopted posterior approximation was appropriate. Code implementing the proposed methodology is freely available in the R package abctools.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/anzs.12087</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-1473
ispartof Australian & New Zealand journal of statistics, 2014-12, Vol.56 (4), p.309-329
issn 1369-1473
1467-842X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01053022v1
source Wiley:Jisc Collections:Wiley Read and Publish 2024-2025
subjects Approximation
Bayesian analysis
Computation
Computer simulation
Diagnostic software
Genetics
Kernels
Life Sciences
likelihood-free inference
Mathematical analysis
Mathematical models
Mathematics
model inference
parameter inference
Populations and Evolution
Statistical methods
Statistics
Statistics Theory
title Diagnostic tools for approximate Bayesian computation using the coverage property
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T13%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnostic%20tools%20for%20approximate%20Bayesian%20computation%20using%20the%20coverage%20property&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Prangle,%20D.&rft.date=2014-12&rft.volume=56&rft.issue=4&rft.spage=309&rft.epage=329&rft.pages=309-329&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/anzs.12087&rft_dat=%3Cproquest_hal_p%3E1660058391%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660058391&rft_id=info:pmid/&rfr_iscdi=true