Loading…
Diagnostic tools for approximate Bayesian computation using the coverage property
Summary Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then acce...
Saved in:
Published in: | Australian & New Zealand journal of statistics 2014-12, Vol.56 (4), p.309-329 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863 |
---|---|
cites | cdi_FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863 |
container_end_page | 329 |
container_issue | 4 |
container_start_page | 309 |
container_title | Australian & New Zealand journal of statistics |
container_volume | 56 |
creator | Prangle, D. Blum, M. G. B. Popovic, G. Sisson, S. A. |
description | Summary
Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then accepting as samples from the approximate posterior, those model and parameter pairs for which the corresponding dataset, or a summary of that dataset, is ‘close’ to the observed data. Closeness is typically determined though a distance measure and a kernel scale parameter. Appropriate choice of that parameter is important in producing a good quality approximation. This paper proposes diagnostic tools for the choice of the kernel scale parameter based on assessing the coverage property, which asserts that credible intervals have the correct coverage levels in appropriately designed simulation settings. We provide theoretical results on coverage for both model and parameter inference, and adapt these into diagnostics for the ABC context. We re‐analyse a study on human demographic history to determine whether the adopted posterior approximation was appropriate. Code implementing the proposed methodology is freely available in the R package abctools. |
doi_str_mv | 10.1111/anzs.12087 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01053022v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660058391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxSNEpcKWSz9Bji1SwBM7dva4_EdaUSpoF3GxBneyuM3GwfYCy6evlxSOncuMnn5v9PSy7DOwPUizj91L2IOS1Woj2wIhVVGL8mYz3VyOCxCKf8y2Q_jNGAjG5Vb2_cjivHMhWpNH59qQN87n2PfePdsFRsoPcEXBYpcbt-iXEaN1Xb4Mtpvn8Z6S-kge55QnR08-rj5lHxpsA-3826Psx8nx9eFZMf12en44mRaGq1oVAGhYdUeCaiFMxZj81dSAgJJAVSLpTFY4NoRgGtFIMJXEEsYoGqVULfko-zr8vcdW9z6F9Svt0OqzyVSvNQas4qwsHyGxXwY2hXxYUoh6YYOhtsWO3DJokJKxqubjNbo7oMa7EDw177-B6XXHet2xfu04wTDAT7al1X9IPbm4vXrzFIPHhkjP7x70f7RUXFV6dnGqr2aXJ9PZzU89438BkYCOyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660058391</pqid></control><display><type>article</type><title>Diagnostic tools for approximate Bayesian computation using the coverage property</title><source>Wiley:Jisc Collections:Wiley Read and Publish 2024-2025</source><creator>Prangle, D. ; Blum, M. G. B. ; Popovic, G. ; Sisson, S. A.</creator><creatorcontrib>Prangle, D. ; Blum, M. G. B. ; Popovic, G. ; Sisson, S. A.</creatorcontrib><description>Summary
Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then accepting as samples from the approximate posterior, those model and parameter pairs for which the corresponding dataset, or a summary of that dataset, is ‘close’ to the observed data. Closeness is typically determined though a distance measure and a kernel scale parameter. Appropriate choice of that parameter is important in producing a good quality approximation. This paper proposes diagnostic tools for the choice of the kernel scale parameter based on assessing the coverage property, which asserts that credible intervals have the correct coverage levels in appropriately designed simulation settings. We provide theoretical results on coverage for both model and parameter inference, and adapt these into diagnostics for the ABC context. We re‐analyse a study on human demographic history to determine whether the adopted posterior approximation was appropriate. Code implementing the proposed methodology is freely available in the R package abctools.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/anzs.12087</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Approximation ; Bayesian analysis ; Computation ; Computer simulation ; Diagnostic software ; Genetics ; Kernels ; Life Sciences ; likelihood-free inference ; Mathematical analysis ; Mathematical models ; Mathematics ; model inference ; parameter inference ; Populations and Evolution ; Statistical methods ; Statistics ; Statistics Theory</subject><ispartof>Australian & New Zealand journal of statistics, 2014-12, Vol.56 (4), p.309-329</ispartof><rights>2014 Australian Statistical Publishing Association Inc. Published by Wiley Publishing Asia Pty Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863</citedby><cites>FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://hal.science/hal-01053022$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Prangle, D.</creatorcontrib><creatorcontrib>Blum, M. G. B.</creatorcontrib><creatorcontrib>Popovic, G.</creatorcontrib><creatorcontrib>Sisson, S. A.</creatorcontrib><title>Diagnostic tools for approximate Bayesian computation using the coverage property</title><title>Australian & New Zealand journal of statistics</title><addtitle>Aust. N. Z. J. Stat</addtitle><description>Summary
Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then accepting as samples from the approximate posterior, those model and parameter pairs for which the corresponding dataset, or a summary of that dataset, is ‘close’ to the observed data. Closeness is typically determined though a distance measure and a kernel scale parameter. Appropriate choice of that parameter is important in producing a good quality approximation. This paper proposes diagnostic tools for the choice of the kernel scale parameter based on assessing the coverage property, which asserts that credible intervals have the correct coverage levels in appropriately designed simulation settings. We provide theoretical results on coverage for both model and parameter inference, and adapt these into diagnostics for the ABC context. We re‐analyse a study on human demographic history to determine whether the adopted posterior approximation was appropriate. Code implementing the proposed methodology is freely available in the R package abctools.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Diagnostic software</subject><subject>Genetics</subject><subject>Kernels</subject><subject>Life Sciences</subject><subject>likelihood-free inference</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>model inference</subject><subject>parameter inference</subject><subject>Populations and Evolution</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Statistics Theory</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxSNEpcKWSz9Bji1SwBM7dva4_EdaUSpoF3GxBneyuM3GwfYCy6evlxSOncuMnn5v9PSy7DOwPUizj91L2IOS1Woj2wIhVVGL8mYz3VyOCxCKf8y2Q_jNGAjG5Vb2_cjivHMhWpNH59qQN87n2PfePdsFRsoPcEXBYpcbt-iXEaN1Xb4Mtpvn8Z6S-kge55QnR08-rj5lHxpsA-3826Psx8nx9eFZMf12en44mRaGq1oVAGhYdUeCaiFMxZj81dSAgJJAVSLpTFY4NoRgGtFIMJXEEsYoGqVULfko-zr8vcdW9z6F9Svt0OqzyVSvNQas4qwsHyGxXwY2hXxYUoh6YYOhtsWO3DJokJKxqubjNbo7oMa7EDw177-B6XXHet2xfu04wTDAT7al1X9IPbm4vXrzFIPHhkjP7x70f7RUXFV6dnGqr2aXJ9PZzU89438BkYCOyA</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Prangle, D.</creator><creator>Blum, M. G. B.</creator><creator>Popovic, G.</creator><creator>Sisson, S. A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>201412</creationdate><title>Diagnostic tools for approximate Bayesian computation using the coverage property</title><author>Prangle, D. ; Blum, M. G. B. ; Popovic, G. ; Sisson, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Diagnostic software</topic><topic>Genetics</topic><topic>Kernels</topic><topic>Life Sciences</topic><topic>likelihood-free inference</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>model inference</topic><topic>parameter inference</topic><topic>Populations and Evolution</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Statistics Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prangle, D.</creatorcontrib><creatorcontrib>Blum, M. G. B.</creatorcontrib><creatorcontrib>Popovic, G.</creatorcontrib><creatorcontrib>Sisson, S. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Australian & New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prangle, D.</au><au>Blum, M. G. B.</au><au>Popovic, G.</au><au>Sisson, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnostic tools for approximate Bayesian computation using the coverage property</atitle><jtitle>Australian & New Zealand journal of statistics</jtitle><addtitle>Aust. N. Z. J. Stat</addtitle><date>2014-12</date><risdate>2014</risdate><volume>56</volume><issue>4</issue><spage>309</spage><epage>329</epage><pages>309-329</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary
Approximate Bayesian computation (ABC) is an approach to sampling from an approximate posterior distribution in the presence of a computationally intractable likelihood function. A common implementation is based on simulating model, parameter and dataset triples from the prior, and then accepting as samples from the approximate posterior, those model and parameter pairs for which the corresponding dataset, or a summary of that dataset, is ‘close’ to the observed data. Closeness is typically determined though a distance measure and a kernel scale parameter. Appropriate choice of that parameter is important in producing a good quality approximation. This paper proposes diagnostic tools for the choice of the kernel scale parameter based on assessing the coverage property, which asserts that credible intervals have the correct coverage levels in appropriately designed simulation settings. We provide theoretical results on coverage for both model and parameter inference, and adapt these into diagnostics for the ABC context. We re‐analyse a study on human demographic history to determine whether the adopted posterior approximation was appropriate. Code implementing the proposed methodology is freely available in the R package abctools.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/anzs.12087</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-1473 |
ispartof | Australian & New Zealand journal of statistics, 2014-12, Vol.56 (4), p.309-329 |
issn | 1369-1473 1467-842X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01053022v1 |
source | Wiley:Jisc Collections:Wiley Read and Publish 2024-2025 |
subjects | Approximation Bayesian analysis Computation Computer simulation Diagnostic software Genetics Kernels Life Sciences likelihood-free inference Mathematical analysis Mathematical models Mathematics model inference parameter inference Populations and Evolution Statistical methods Statistics Statistics Theory |
title | Diagnostic tools for approximate Bayesian computation using the coverage property |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T13%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnostic%20tools%20for%20approximate%20Bayesian%20computation%20using%20the%20coverage%20property&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Prangle,%20D.&rft.date=2014-12&rft.volume=56&rft.issue=4&rft.spage=309&rft.epage=329&rft.pages=309-329&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/anzs.12087&rft_dat=%3Cproquest_hal_p%3E1660058391%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3787-11ac05be4e844c5006df81a1a6e1754e4e065a9cea1cf4f61c56a219a4f777863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660058391&rft_id=info:pmid/&rfr_iscdi=true |