Loading…

Effect of water on the frictional behavior of cohesive rocks during earthquakes

Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive si...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2014-01, Vol.42 (1), p.27-30
Main Authors: Violay, M, Nielsen, S, Gibert, B, Spagnuolo, E, Cavallo, A, Azais, P, Vinciguerra, S, Di Toro, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13
cites cdi_FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13
container_end_page 30
container_issue 1
container_start_page 27
container_title Geology (Boulder)
container_volume 42
creator Violay, M
Nielsen, S
Gibert, B
Spagnuolo, E
Cavallo, A
Azais, P
Vinciguerra, S
Di Toro, G
description Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H2O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.
doi_str_mv 10.1130/G34916.1
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01054327v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3178441681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13</originalsourceid><addsrcrecordid>eNpd0dFK5TAQBuAgLuzRXdhHCHijSHXSpE1zKeKqcMAb9zpM04mN1kaT9si-vaccUfAqMHz8M-Rn7I-AMyEknF9LZUR9JvbYShgli7Juyn22AjCi0LWQP9lBzo8AQlW6WbG7K-_JTTx6_oYTJR5HPvXEfQpuCnHEgbfU4ybEtBgXe8phQzxF95R5N6cwPnDCNPWvMz5R_sV-eBwy_f54D9m_v1f3lzfF-u769vJiXaBSeiocGd-V1JiKatTYdqUn8IidUS04JZxpVSNaIDRYq0pBJ6UGjc5jK9EJechOdrk9DvYlhWdM_23EYG8u1naZgYBKyVJvFnu8sy8pvs6UJ_scsqNhwJHinK2ooJZaKam29OgbfYxz2v7CVildK6NLaL4CXYo5J_KfFwiwSwt214Jddp_u6APF7AKNjt5iGrqv3HJbhQUoZdXId1gsh4o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476497208</pqid></control><display><type>article</type><title>Effect of water on the frictional behavior of cohesive rocks during earthquakes</title><source>GeoScienceWorld</source><creator>Violay, M ; Nielsen, S ; Gibert, B ; Spagnuolo, E ; Cavallo, A ; Azais, P ; Vinciguerra, S ; Di Toro, G</creator><creatorcontrib>Violay, M ; Nielsen, S ; Gibert, B ; Spagnuolo, E ; Cavallo, A ; Azais, P ; Vinciguerra, S ; Di Toro, G</creatorcontrib><description>Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H2O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G34916.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>analog simulation ; Asperity ; Cohesion ; Earth Sciences ; Earthquakes ; Effects ; Environmental Sciences ; experimental studies ; Experiments ; faults ; Fluid dynamics ; Fluid flow ; Friction ; gabbros ; Geophysics ; Global Changes ; igneous rocks ; laboratory studies ; marbles ; metamorphic rocks ; microgabbro ; microstructure ; Nucleation ; physical models ; Physics ; plutonic rocks ; Rocks ; Sciences of the Universe ; Seismic phenomena ; Seismology ; Water ; water-rock interaction</subject><ispartof>Geology (Boulder), 2014-01, Vol.42 (1), p.27-30</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Jan 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13</citedby><cites>FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13</cites><orcidid>0000-0002-7402-8263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G34916.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,38881,77824</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01054327$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Violay, M</creatorcontrib><creatorcontrib>Nielsen, S</creatorcontrib><creatorcontrib>Gibert, B</creatorcontrib><creatorcontrib>Spagnuolo, E</creatorcontrib><creatorcontrib>Cavallo, A</creatorcontrib><creatorcontrib>Azais, P</creatorcontrib><creatorcontrib>Vinciguerra, S</creatorcontrib><creatorcontrib>Di Toro, G</creatorcontrib><title>Effect of water on the frictional behavior of cohesive rocks during earthquakes</title><title>Geology (Boulder)</title><description>Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H2O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.</description><subject>analog simulation</subject><subject>Asperity</subject><subject>Cohesion</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Effects</subject><subject>Environmental Sciences</subject><subject>experimental studies</subject><subject>Experiments</subject><subject>faults</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Friction</subject><subject>gabbros</subject><subject>Geophysics</subject><subject>Global Changes</subject><subject>igneous rocks</subject><subject>laboratory studies</subject><subject>marbles</subject><subject>metamorphic rocks</subject><subject>microgabbro</subject><subject>microstructure</subject><subject>Nucleation</subject><subject>physical models</subject><subject>Physics</subject><subject>plutonic rocks</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><subject>Water</subject><subject>water-rock interaction</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0dFK5TAQBuAgLuzRXdhHCHijSHXSpE1zKeKqcMAb9zpM04mN1kaT9si-vaccUfAqMHz8M-Rn7I-AMyEknF9LZUR9JvbYShgli7Juyn22AjCi0LWQP9lBzo8AQlW6WbG7K-_JTTx6_oYTJR5HPvXEfQpuCnHEgbfU4ybEtBgXe8phQzxF95R5N6cwPnDCNPWvMz5R_sV-eBwy_f54D9m_v1f3lzfF-u769vJiXaBSeiocGd-V1JiKatTYdqUn8IidUS04JZxpVSNaIDRYq0pBJ6UGjc5jK9EJechOdrk9DvYlhWdM_23EYG8u1naZgYBKyVJvFnu8sy8pvs6UJ_scsqNhwJHinK2ooJZaKam29OgbfYxz2v7CVildK6NLaL4CXYo5J_KfFwiwSwt214Jddp_u6APF7AKNjt5iGrqv3HJbhQUoZdXId1gsh4o</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Violay, M</creator><creator>Nielsen, S</creator><creator>Gibert, B</creator><creator>Spagnuolo, E</creator><creator>Cavallo, A</creator><creator>Azais, P</creator><creator>Vinciguerra, S</creator><creator>Di Toro, G</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7402-8263</orcidid></search><sort><creationdate>20140101</creationdate><title>Effect of water on the frictional behavior of cohesive rocks during earthquakes</title><author>Violay, M ; Nielsen, S ; Gibert, B ; Spagnuolo, E ; Cavallo, A ; Azais, P ; Vinciguerra, S ; Di Toro, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>analog simulation</topic><topic>Asperity</topic><topic>Cohesion</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Effects</topic><topic>Environmental Sciences</topic><topic>experimental studies</topic><topic>Experiments</topic><topic>faults</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Friction</topic><topic>gabbros</topic><topic>Geophysics</topic><topic>Global Changes</topic><topic>igneous rocks</topic><topic>laboratory studies</topic><topic>marbles</topic><topic>metamorphic rocks</topic><topic>microgabbro</topic><topic>microstructure</topic><topic>Nucleation</topic><topic>physical models</topic><topic>Physics</topic><topic>plutonic rocks</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><topic>Water</topic><topic>water-rock interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Violay, M</creatorcontrib><creatorcontrib>Nielsen, S</creatorcontrib><creatorcontrib>Gibert, B</creatorcontrib><creatorcontrib>Spagnuolo, E</creatorcontrib><creatorcontrib>Cavallo, A</creatorcontrib><creatorcontrib>Azais, P</creatorcontrib><creatorcontrib>Vinciguerra, S</creatorcontrib><creatorcontrib>Di Toro, G</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Violay, M</au><au>Nielsen, S</au><au>Gibert, B</au><au>Spagnuolo, E</au><au>Cavallo, A</au><au>Azais, P</au><au>Vinciguerra, S</au><au>Di Toro, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of water on the frictional behavior of cohesive rocks during earthquakes</atitle><jtitle>Geology (Boulder)</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>42</volume><issue>1</issue><spage>27</spage><epage>30</epage><pages>27-30</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H2O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G34916.1</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7402-8263</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2014-01, Vol.42 (1), p.27-30
issn 0091-7613
1943-2682
language eng
recordid cdi_hal_primary_oai_HAL_hal_01054327v1
source GeoScienceWorld
subjects analog simulation
Asperity
Cohesion
Earth Sciences
Earthquakes
Effects
Environmental Sciences
experimental studies
Experiments
faults
Fluid dynamics
Fluid flow
Friction
gabbros
Geophysics
Global Changes
igneous rocks
laboratory studies
marbles
metamorphic rocks
microgabbro
microstructure
Nucleation
physical models
Physics
plutonic rocks
Rocks
Sciences of the Universe
Seismic phenomena
Seismology
Water
water-rock interaction
title Effect of water on the frictional behavior of cohesive rocks during earthquakes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20water%20on%20the%20frictional%20behavior%20of%20cohesive%20rocks%20during%20earthquakes&rft.jtitle=Geology%20(Boulder)&rft.au=Violay,%20M&rft.date=2014-01-01&rft.volume=42&rft.issue=1&rft.spage=27&rft.epage=30&rft.pages=27-30&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G34916.1&rft_dat=%3Cproquest_hal_p%3E3178441681%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1476497208&rft_id=info:pmid/&rfr_iscdi=true