Loading…
Effect of water on the frictional behavior of cohesive rocks during earthquakes
Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive si...
Saved in:
Published in: | Geology (Boulder) 2014-01, Vol.42 (1), p.27-30 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13 |
---|---|
cites | cdi_FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13 |
container_end_page | 30 |
container_issue | 1 |
container_start_page | 27 |
container_title | Geology (Boulder) |
container_volume | 42 |
creator | Violay, M Nielsen, S Gibert, B Spagnuolo, E Cavallo, A Azais, P Vinciguerra, S Di Toro, G |
description | Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H2O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks. |
doi_str_mv | 10.1130/G34916.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01054327v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3178441681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13</originalsourceid><addsrcrecordid>eNpd0dFK5TAQBuAgLuzRXdhHCHijSHXSpE1zKeKqcMAb9zpM04mN1kaT9si-vaccUfAqMHz8M-Rn7I-AMyEknF9LZUR9JvbYShgli7Juyn22AjCi0LWQP9lBzo8AQlW6WbG7K-_JTTx6_oYTJR5HPvXEfQpuCnHEgbfU4ybEtBgXe8phQzxF95R5N6cwPnDCNPWvMz5R_sV-eBwy_f54D9m_v1f3lzfF-u769vJiXaBSeiocGd-V1JiKatTYdqUn8IidUS04JZxpVSNaIDRYq0pBJ6UGjc5jK9EJechOdrk9DvYlhWdM_23EYG8u1naZgYBKyVJvFnu8sy8pvs6UJ_scsqNhwJHinK2ooJZaKam29OgbfYxz2v7CVildK6NLaL4CXYo5J_KfFwiwSwt214Jddp_u6APF7AKNjt5iGrqv3HJbhQUoZdXId1gsh4o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476497208</pqid></control><display><type>article</type><title>Effect of water on the frictional behavior of cohesive rocks during earthquakes</title><source>GeoScienceWorld</source><creator>Violay, M ; Nielsen, S ; Gibert, B ; Spagnuolo, E ; Cavallo, A ; Azais, P ; Vinciguerra, S ; Di Toro, G</creator><creatorcontrib>Violay, M ; Nielsen, S ; Gibert, B ; Spagnuolo, E ; Cavallo, A ; Azais, P ; Vinciguerra, S ; Di Toro, G</creatorcontrib><description>Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H2O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G34916.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>analog simulation ; Asperity ; Cohesion ; Earth Sciences ; Earthquakes ; Effects ; Environmental Sciences ; experimental studies ; Experiments ; faults ; Fluid dynamics ; Fluid flow ; Friction ; gabbros ; Geophysics ; Global Changes ; igneous rocks ; laboratory studies ; marbles ; metamorphic rocks ; microgabbro ; microstructure ; Nucleation ; physical models ; Physics ; plutonic rocks ; Rocks ; Sciences of the Universe ; Seismic phenomena ; Seismology ; Water ; water-rock interaction</subject><ispartof>Geology (Boulder), 2014-01, Vol.42 (1), p.27-30</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Jan 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13</citedby><cites>FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13</cites><orcidid>0000-0002-7402-8263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G34916.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,38881,77824</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01054327$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Violay, M</creatorcontrib><creatorcontrib>Nielsen, S</creatorcontrib><creatorcontrib>Gibert, B</creatorcontrib><creatorcontrib>Spagnuolo, E</creatorcontrib><creatorcontrib>Cavallo, A</creatorcontrib><creatorcontrib>Azais, P</creatorcontrib><creatorcontrib>Vinciguerra, S</creatorcontrib><creatorcontrib>Di Toro, G</creatorcontrib><title>Effect of water on the frictional behavior of cohesive rocks during earthquakes</title><title>Geology (Boulder)</title><description>Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H2O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.</description><subject>analog simulation</subject><subject>Asperity</subject><subject>Cohesion</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Effects</subject><subject>Environmental Sciences</subject><subject>experimental studies</subject><subject>Experiments</subject><subject>faults</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Friction</subject><subject>gabbros</subject><subject>Geophysics</subject><subject>Global Changes</subject><subject>igneous rocks</subject><subject>laboratory studies</subject><subject>marbles</subject><subject>metamorphic rocks</subject><subject>microgabbro</subject><subject>microstructure</subject><subject>Nucleation</subject><subject>physical models</subject><subject>Physics</subject><subject>plutonic rocks</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><subject>Water</subject><subject>water-rock interaction</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0dFK5TAQBuAgLuzRXdhHCHijSHXSpE1zKeKqcMAb9zpM04mN1kaT9si-vaccUfAqMHz8M-Rn7I-AMyEknF9LZUR9JvbYShgli7Juyn22AjCi0LWQP9lBzo8AQlW6WbG7K-_JTTx6_oYTJR5HPvXEfQpuCnHEgbfU4ybEtBgXe8phQzxF95R5N6cwPnDCNPWvMz5R_sV-eBwy_f54D9m_v1f3lzfF-u769vJiXaBSeiocGd-V1JiKatTYdqUn8IidUS04JZxpVSNaIDRYq0pBJ6UGjc5jK9EJechOdrk9DvYlhWdM_23EYG8u1naZgYBKyVJvFnu8sy8pvs6UJ_scsqNhwJHinK2ooJZaKam29OgbfYxz2v7CVildK6NLaL4CXYo5J_KfFwiwSwt214Jddp_u6APF7AKNjt5iGrqv3HJbhQUoZdXId1gsh4o</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Violay, M</creator><creator>Nielsen, S</creator><creator>Gibert, B</creator><creator>Spagnuolo, E</creator><creator>Cavallo, A</creator><creator>Azais, P</creator><creator>Vinciguerra, S</creator><creator>Di Toro, G</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7402-8263</orcidid></search><sort><creationdate>20140101</creationdate><title>Effect of water on the frictional behavior of cohesive rocks during earthquakes</title><author>Violay, M ; Nielsen, S ; Gibert, B ; Spagnuolo, E ; Cavallo, A ; Azais, P ; Vinciguerra, S ; Di Toro, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>analog simulation</topic><topic>Asperity</topic><topic>Cohesion</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Effects</topic><topic>Environmental Sciences</topic><topic>experimental studies</topic><topic>Experiments</topic><topic>faults</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Friction</topic><topic>gabbros</topic><topic>Geophysics</topic><topic>Global Changes</topic><topic>igneous rocks</topic><topic>laboratory studies</topic><topic>marbles</topic><topic>metamorphic rocks</topic><topic>microgabbro</topic><topic>microstructure</topic><topic>Nucleation</topic><topic>physical models</topic><topic>Physics</topic><topic>plutonic rocks</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><topic>Water</topic><topic>water-rock interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Violay, M</creatorcontrib><creatorcontrib>Nielsen, S</creatorcontrib><creatorcontrib>Gibert, B</creatorcontrib><creatorcontrib>Spagnuolo, E</creatorcontrib><creatorcontrib>Cavallo, A</creatorcontrib><creatorcontrib>Azais, P</creatorcontrib><creatorcontrib>Vinciguerra, S</creatorcontrib><creatorcontrib>Di Toro, G</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Violay, M</au><au>Nielsen, S</au><au>Gibert, B</au><au>Spagnuolo, E</au><au>Cavallo, A</au><au>Azais, P</au><au>Vinciguerra, S</au><au>Di Toro, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of water on the frictional behavior of cohesive rocks during earthquakes</atitle><jtitle>Geology (Boulder)</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>42</volume><issue>1</issue><spage>27</spage><epage>30</epage><pages>27-30</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H2O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G34916.1</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7402-8263</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2014-01, Vol.42 (1), p.27-30 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01054327v1 |
source | GeoScienceWorld |
subjects | analog simulation Asperity Cohesion Earth Sciences Earthquakes Effects Environmental Sciences experimental studies Experiments faults Fluid dynamics Fluid flow Friction gabbros Geophysics Global Changes igneous rocks laboratory studies marbles metamorphic rocks microgabbro microstructure Nucleation physical models Physics plutonic rocks Rocks Sciences of the Universe Seismic phenomena Seismology Water water-rock interaction |
title | Effect of water on the frictional behavior of cohesive rocks during earthquakes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20water%20on%20the%20frictional%20behavior%20of%20cohesive%20rocks%20during%20earthquakes&rft.jtitle=Geology%20(Boulder)&rft.au=Violay,%20M&rft.date=2014-01-01&rft.volume=42&rft.issue=1&rft.spage=27&rft.epage=30&rft.pages=27-30&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G34916.1&rft_dat=%3Cproquest_hal_p%3E3178441681%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a447t-ce9fd2e895e6a7abd2fe0faad94b0c41c9b481b0ea9a64540d33707acfab3ac13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1476497208&rft_id=info:pmid/&rfr_iscdi=true |