Loading…
flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity
SCOPE: Flavonoids represent a group of polyphenolic compounds commonly found in daily nutrition with proven health benefits. Among this group, the flavonol fisetin has been previously shown to protect bone by repressing osteoclast differentiation. In the present study, we investigated the role of fi...
Saved in:
Published in: | Molecular nutrition & food research 2014-06, Vol.58 (6), p.1239-1248 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5654-94eca27e3063efcda05bb05e39f7dcee94da752176c610d77b45f8f198dce7eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5654-94eca27e3063efcda05bb05e39f7dcee94da752176c610d77b45f8f198dce7eb3 |
container_end_page | 1248 |
container_issue | 6 |
container_start_page | 1239 |
container_title | Molecular nutrition & food research |
container_volume | 58 |
creator | Léotoing, Laurent Davicco, Marie‐Jeanne Lebecque, Patrice Wittrant, Yohann Coxam, Véronique |
description | SCOPE: Flavonoids represent a group of polyphenolic compounds commonly found in daily nutrition with proven health benefits. Among this group, the flavonol fisetin has been previously shown to protect bone by repressing osteoclast differentiation. In the present study, we investigated the role of fisetin in regulating osteoblasts physiology. METHODS AND RESULTS: In vivo mice treated with LPSs exhibited osteoporosis features associated with a dramatic repression of osteoblast marker expression. In this model, inhibition of osteocalcin and type I collagen alpha 1 transcription was partially countered by a daily consumption of fisetin. Interestingly, in vitro, fisetin promoted both osteoblast alkaline phosphatase activity and mineralization process. To decipher how fisetin may exert its positive effect on osteoblastogenesis, we analyzed its ability to control the runt‐related transcription factor 2 (Runx2), a key organizer in developing and maturing osteoblasts. While fisetin did not impact Runx2 mRNA and protein levels, it upregulated its transcriptional activity. Actually, fisetin stimulated the luciferase activity of a reporter plasmid driven by the osteocalcin gene promoter that contains Runx2 binding sites and promoted the mRNA expression of osteocalcin and type I collagen alpha 1 targets. CONCLUSION: Bone sparing properties of fisetin also rely on its positive influence on osteoblast differentiation and activity. |
doi_str_mv | 10.1002/mnfr.201300836 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01056817v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534100066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5654-94eca27e3063efcda05bb05e39f7dcee94da752176c610d77b45f8f198dce7eb3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxSMEoqVw5Qi5IMEhy_gzybFd0RZ1KahQcUKW49hdQxIvtrN0_3scZVmOcLLl-b0343lZ9hzBAgHgt_1g_AIDIgAV4Q-yY8QRKSgi5OHhjtlR9iSE7wAEYUoeZ0eYMsLqGh1n30wnt25wts2NDTraId9417uoQ-5C1K7pZIghb60x2ushWhmtG_K49m68W-c343CP8-jlEJS3m6kmu1yqaLc27p5mj4zsgn62P0-y2_N3X5aXxerjxfvl6apQjDNa1FQriUtNgBNtVCuBNQ0wTWpTtkrrmrayZBiVXHEEbVk2lJnKoLpK1VI35CR7M_uuZSc23vbS74STVlyersT0BggYr1C5RYl9PbPpnz9HHaLobVC66-Sg3RgEYpQCwhXi_4ESmlIAPqGLGVXeheC1OYyBQExJiSkpcUgqCV7svcem1-0B_xNNAl7tARmU7ExasbLhL1cxjoFB4ujM_bKd3v2jrfhwfX6TFkmTrJhlNqV8f5BJ_0PwkpRMfL2-EPXV2afV1bIWU5uXM2-kE_LOp1FuPydfCoAYI5iQ3-c-xWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534100066</pqid></control><display><type>article</type><title>flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity</title><source>Wiley</source><creator>Léotoing, Laurent ; Davicco, Marie‐Jeanne ; Lebecque, Patrice ; Wittrant, Yohann ; Coxam, Véronique</creator><creatorcontrib>Léotoing, Laurent ; Davicco, Marie‐Jeanne ; Lebecque, Patrice ; Wittrant, Yohann ; Coxam, Véronique</creatorcontrib><description>SCOPE: Flavonoids represent a group of polyphenolic compounds commonly found in daily nutrition with proven health benefits. Among this group, the flavonol fisetin has been previously shown to protect bone by repressing osteoclast differentiation. In the present study, we investigated the role of fisetin in regulating osteoblasts physiology. METHODS AND RESULTS: In vivo mice treated with LPSs exhibited osteoporosis features associated with a dramatic repression of osteoblast marker expression. In this model, inhibition of osteocalcin and type I collagen alpha 1 transcription was partially countered by a daily consumption of fisetin. Interestingly, in vitro, fisetin promoted both osteoblast alkaline phosphatase activity and mineralization process. To decipher how fisetin may exert its positive effect on osteoblastogenesis, we analyzed its ability to control the runt‐related transcription factor 2 (Runx2), a key organizer in developing and maturing osteoblasts. While fisetin did not impact Runx2 mRNA and protein levels, it upregulated its transcriptional activity. Actually, fisetin stimulated the luciferase activity of a reporter plasmid driven by the osteocalcin gene promoter that contains Runx2 binding sites and promoted the mRNA expression of osteocalcin and type I collagen alpha 1 targets. CONCLUSION: Bone sparing properties of fisetin also rely on its positive influence on osteoblast differentiation and activity.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.201300836</identifier><identifier>PMID: 24535991</identifier><language>eng</language><publisher>Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA</publisher><subject>alkaline phosphatase ; Animals ; binding sites ; Biological and medical sciences ; Bone ; Cell Differentiation - drug effects ; Cells, Cultured ; collagen ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Feeding. Feeding behavior ; Fisetin ; Flavonoids - pharmacology ; flavonols ; Food and Nutrition ; Fundamental and applied biological sciences. Psychology ; gene expression ; gene expression regulation ; genes ; Life Sciences ; Lipopolysaccharides - adverse effects ; luciferase ; messenger RNA ; Mice ; Mice, Inbred C57BL ; mineralization ; nutrition ; Osteoblast ; osteoblasts ; Osteoblasts - drug effects ; osteocalcin ; Osteocalcin - genetics ; Osteocalcin - metabolism ; osteoporosis ; physiology ; plasmids ; Polyphenol ; polyphenols ; Promoter Regions, Genetic ; Rats ; Rats, Wistar ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Runx2 ; transcription (genetics) ; transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Up-Regulation ; Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><ispartof>Molecular nutrition & food research, 2014-06, Vol.58 (6), p.1239-1248</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5654-94eca27e3063efcda05bb05e39f7dcee94da752176c610d77b45f8f198dce7eb3</citedby><cites>FETCH-LOGICAL-c5654-94eca27e3063efcda05bb05e39f7dcee94da752176c610d77b45f8f198dce7eb3</cites><orcidid>0000-0003-3811-8859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28562050$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24535991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01056817$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Léotoing, Laurent</creatorcontrib><creatorcontrib>Davicco, Marie‐Jeanne</creatorcontrib><creatorcontrib>Lebecque, Patrice</creatorcontrib><creatorcontrib>Wittrant, Yohann</creatorcontrib><creatorcontrib>Coxam, Véronique</creatorcontrib><title>flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity</title><title>Molecular nutrition & food research</title><addtitle>Mol. Nutr. Food Res</addtitle><description>SCOPE: Flavonoids represent a group of polyphenolic compounds commonly found in daily nutrition with proven health benefits. Among this group, the flavonol fisetin has been previously shown to protect bone by repressing osteoclast differentiation. In the present study, we investigated the role of fisetin in regulating osteoblasts physiology. METHODS AND RESULTS: In vivo mice treated with LPSs exhibited osteoporosis features associated with a dramatic repression of osteoblast marker expression. In this model, inhibition of osteocalcin and type I collagen alpha 1 transcription was partially countered by a daily consumption of fisetin. Interestingly, in vitro, fisetin promoted both osteoblast alkaline phosphatase activity and mineralization process. To decipher how fisetin may exert its positive effect on osteoblastogenesis, we analyzed its ability to control the runt‐related transcription factor 2 (Runx2), a key organizer in developing and maturing osteoblasts. While fisetin did not impact Runx2 mRNA and protein levels, it upregulated its transcriptional activity. Actually, fisetin stimulated the luciferase activity of a reporter plasmid driven by the osteocalcin gene promoter that contains Runx2 binding sites and promoted the mRNA expression of osteocalcin and type I collagen alpha 1 targets. CONCLUSION: Bone sparing properties of fisetin also rely on its positive influence on osteoblast differentiation and activity.</description><subject>alkaline phosphatase</subject><subject>Animals</subject><subject>binding sites</subject><subject>Biological and medical sciences</subject><subject>Bone</subject><subject>Cell Differentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>collagen</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>Fisetin</subject><subject>Flavonoids - pharmacology</subject><subject>flavonols</subject><subject>Food and Nutrition</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides - adverse effects</subject><subject>luciferase</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mineralization</subject><subject>nutrition</subject><subject>Osteoblast</subject><subject>osteoblasts</subject><subject>Osteoblasts - drug effects</subject><subject>osteocalcin</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>osteoporosis</subject><subject>physiology</subject><subject>plasmids</subject><subject>Polyphenol</subject><subject>polyphenols</subject><subject>Promoter Regions, Genetic</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Runx2</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Up-Regulation</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc1v1DAQxSMEoqVw5Qi5IMEhy_gzybFd0RZ1KahQcUKW49hdQxIvtrN0_3scZVmOcLLl-b0343lZ9hzBAgHgt_1g_AIDIgAV4Q-yY8QRKSgi5OHhjtlR9iSE7wAEYUoeZ0eYMsLqGh1n30wnt25wts2NDTraId9417uoQ-5C1K7pZIghb60x2ushWhmtG_K49m68W-c343CP8-jlEJS3m6kmu1yqaLc27p5mj4zsgn62P0-y2_N3X5aXxerjxfvl6apQjDNa1FQriUtNgBNtVCuBNQ0wTWpTtkrrmrayZBiVXHEEbVk2lJnKoLpK1VI35CR7M_uuZSc23vbS74STVlyersT0BggYr1C5RYl9PbPpnz9HHaLobVC66-Sg3RgEYpQCwhXi_4ESmlIAPqGLGVXeheC1OYyBQExJiSkpcUgqCV7svcem1-0B_xNNAl7tARmU7ExasbLhL1cxjoFB4ujM_bKd3v2jrfhwfX6TFkmTrJhlNqV8f5BJ_0PwkpRMfL2-EPXV2afV1bIWU5uXM2-kE_LOp1FuPydfCoAYI5iQ3-c-xWU</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Léotoing, Laurent</creator><creator>Davicco, Marie‐Jeanne</creator><creator>Lebecque, Patrice</creator><creator>Wittrant, Yohann</creator><creator>Coxam, Véronique</creator><general>Wiley-VCH Verlag GmbH & Co. KGaA</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley-VCH Verlag</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3811-8859</orcidid></search><sort><creationdate>201406</creationdate><title>flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity</title><author>Léotoing, Laurent ; Davicco, Marie‐Jeanne ; Lebecque, Patrice ; Wittrant, Yohann ; Coxam, Véronique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5654-94eca27e3063efcda05bb05e39f7dcee94da752176c610d77b45f8f198dce7eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alkaline phosphatase</topic><topic>Animals</topic><topic>binding sites</topic><topic>Biological and medical sciences</topic><topic>Bone</topic><topic>Cell Differentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>collagen</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>Fisetin</topic><topic>Flavonoids - pharmacology</topic><topic>flavonols</topic><topic>Food and Nutrition</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides - adverse effects</topic><topic>luciferase</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mineralization</topic><topic>nutrition</topic><topic>Osteoblast</topic><topic>osteoblasts</topic><topic>Osteoblasts - drug effects</topic><topic>osteocalcin</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>osteoporosis</topic><topic>physiology</topic><topic>plasmids</topic><topic>Polyphenol</topic><topic>polyphenols</topic><topic>Promoter Regions, Genetic</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Runx2</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Up-Regulation</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Léotoing, Laurent</creatorcontrib><creatorcontrib>Davicco, Marie‐Jeanne</creatorcontrib><creatorcontrib>Lebecque, Patrice</creatorcontrib><creatorcontrib>Wittrant, Yohann</creatorcontrib><creatorcontrib>Coxam, Véronique</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular nutrition & food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Léotoing, Laurent</au><au>Davicco, Marie‐Jeanne</au><au>Lebecque, Patrice</au><au>Wittrant, Yohann</au><au>Coxam, Véronique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity</atitle><jtitle>Molecular nutrition & food research</jtitle><addtitle>Mol. Nutr. Food Res</addtitle><date>2014-06</date><risdate>2014</risdate><volume>58</volume><issue>6</issue><spage>1239</spage><epage>1248</epage><pages>1239-1248</pages><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>SCOPE: Flavonoids represent a group of polyphenolic compounds commonly found in daily nutrition with proven health benefits. Among this group, the flavonol fisetin has been previously shown to protect bone by repressing osteoclast differentiation. In the present study, we investigated the role of fisetin in regulating osteoblasts physiology. METHODS AND RESULTS: In vivo mice treated with LPSs exhibited osteoporosis features associated with a dramatic repression of osteoblast marker expression. In this model, inhibition of osteocalcin and type I collagen alpha 1 transcription was partially countered by a daily consumption of fisetin. Interestingly, in vitro, fisetin promoted both osteoblast alkaline phosphatase activity and mineralization process. To decipher how fisetin may exert its positive effect on osteoblastogenesis, we analyzed its ability to control the runt‐related transcription factor 2 (Runx2), a key organizer in developing and maturing osteoblasts. While fisetin did not impact Runx2 mRNA and protein levels, it upregulated its transcriptional activity. Actually, fisetin stimulated the luciferase activity of a reporter plasmid driven by the osteocalcin gene promoter that contains Runx2 binding sites and promoted the mRNA expression of osteocalcin and type I collagen alpha 1 targets. CONCLUSION: Bone sparing properties of fisetin also rely on its positive influence on osteoblast differentiation and activity.</abstract><cop>Weinheim</cop><pub>Wiley-VCH Verlag GmbH & Co. KGaA</pub><pmid>24535991</pmid><doi>10.1002/mnfr.201300836</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3811-8859</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4125 |
ispartof | Molecular nutrition & food research, 2014-06, Vol.58 (6), p.1239-1248 |
issn | 1613-4125 1613-4133 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01056817v1 |
source | Wiley |
subjects | alkaline phosphatase Animals binding sites Biological and medical sciences Bone Cell Differentiation - drug effects Cells, Cultured collagen Collagen Type I - genetics Collagen Type I - metabolism Core Binding Factor Alpha 1 Subunit - genetics Core Binding Factor Alpha 1 Subunit - metabolism Feeding. Feeding behavior Fisetin Flavonoids - pharmacology flavonols Food and Nutrition Fundamental and applied biological sciences. Psychology gene expression gene expression regulation genes Life Sciences Lipopolysaccharides - adverse effects luciferase messenger RNA Mice Mice, Inbred C57BL mineralization nutrition Osteoblast osteoblasts Osteoblasts - drug effects osteocalcin Osteocalcin - genetics Osteocalcin - metabolism osteoporosis physiology plasmids Polyphenol polyphenols Promoter Regions, Genetic Rats Rats, Wistar RNA, Messenger - genetics RNA, Messenger - metabolism Runx2 transcription (genetics) transcription factors Transcription Factors - genetics Transcription Factors - metabolism Up-Regulation Vertebrates: anatomy and physiology, studies on body, several organs or systems |
title | flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=flavonoid%20fisetin%20promotes%20osteoblasts%20differentiation%20through%20Runx2%20transcriptional%20activity&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=L%C3%A9otoing,%20Laurent&rft.date=2014-06&rft.volume=58&rft.issue=6&rft.spage=1239&rft.epage=1248&rft.pages=1239-1248&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.201300836&rft_dat=%3Cproquest_hal_p%3E1534100066%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5654-94eca27e3063efcda05bb05e39f7dcee94da752176c610d77b45f8f198dce7eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1534100066&rft_id=info:pmid/24535991&rfr_iscdi=true |