Loading…

Schemas for Unordered XML on a DIME

We investigate schema languages for unordered XML having no relative order among siblings. First, we propose unordered regular expressions (UREs), essentially regular expressions with unordered concatenation instead of standard concatenation, that define languages of unordered words to model the all...

Full description

Saved in:
Bibliographic Details
Published in:Theory of computing systems 2015-08, Vol.57 (2), p.337-376
Main Authors: Boneva, Iovka, Ciucanu, Radu, Staworko, Sławek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-f606549aa5c6493ebdcad3c3eed212b0692921c923f88babbd275dcb208548633
cites cdi_FETCH-LOGICAL-c453t-f606549aa5c6493ebdcad3c3eed212b0692921c923f88babbd275dcb208548633
container_end_page 376
container_issue 2
container_start_page 337
container_title Theory of computing systems
container_volume 57
creator Boneva, Iovka
Ciucanu, Radu
Staworko, Sławek
description We investigate schema languages for unordered XML having no relative order among siblings. First, we propose unordered regular expressions (UREs), essentially regular expressions with unordered concatenation instead of standard concatenation, that define languages of unordered words to model the allowed content of a node (i.e., collections of the labels of children). However, unrestricted UREs are computationally too expensive as we show the intractability of two fundamental decision problems for UREs: membership of an unordered word to the language of a URE and containment of two UREs. Consequently, we propose a practical and tractable restriction of UREs, disjunctive interval multiplicity expressions (DIMEs). Next, we employ DIMEs to define languages of unordered trees and propose two schema languages: disjunctive interval multiplicity schema (DIMS), and its restriction, disjunction-free interval multiplicity schema (IMS). We study the complexity of the following static analysis problems: schema satisfiability, membership of a tree to the language of a schema, schema containment, as well as twig query satisfiability, implication, and containment in the presence of schema. Finally, we study the expressive power of the proposed schema languages and compare them with yardstick languages of unordered trees (FO, MSO, and Presburger constraints) and DTDs under commutative closure. Our results show that the proposed schema languages are capable of expressing many practical languages of unordered trees and enjoy desirable computational properties.
doi_str_mv 10.1007/s00224-014-9593-1
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01076329v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730104124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-f606549aa5c6493ebdcad3c3eed212b0692921c923f88babbd275dcb208548633</originalsourceid><addsrcrecordid>eNp10E9LwzAYBvAgCs7pB_BW2EUP0Tf_2uY45nSDDg868BbSNHUbXTOTTfDbm1oRETwlhN_78uRB6JLADQHIbgMApRwD4VgKyTA5QgPCGcPAJRx_3SnmTMApOgthAwAsBxig0ZNZ2a0OSe18smydr6y3VfKyKBLXJjq5my-m5-ik1k2wF9_nEC3vp8-TGS4eH-aTcYENF2yP6xRSwaXWwqRcMltWRlfMMGsrSmgJqaSSEiMpq_O81GVZ0UxUpqSQC56njA3Rdb93pRu18-ut9h_K6bWajQvVvQGBLGVUvpNor3q78-7tYMNebdfB2KbRrXWHoEjGouaE8khHf-jGHXwbfxJVrC1LaS6iIr0y3oXgbf2TgIDqKlZ9xTEEV13FqgtB-5kQbftq_a_N_w59An4BeS4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700276285</pqid></control><display><type>article</type><title>Schemas for Unordered XML on a DIME</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Boneva, Iovka ; Ciucanu, Radu ; Staworko, Sławek</creator><creatorcontrib>Boneva, Iovka ; Ciucanu, Radu ; Staworko, Sławek</creatorcontrib><description>We investigate schema languages for unordered XML having no relative order among siblings. First, we propose unordered regular expressions (UREs), essentially regular expressions with unordered concatenation instead of standard concatenation, that define languages of unordered words to model the allowed content of a node (i.e., collections of the labels of children). However, unrestricted UREs are computationally too expensive as we show the intractability of two fundamental decision problems for UREs: membership of an unordered word to the language of a URE and containment of two UREs. Consequently, we propose a practical and tractable restriction of UREs, disjunctive interval multiplicity expressions (DIMEs). Next, we employ DIMEs to define languages of unordered trees and propose two schema languages: disjunctive interval multiplicity schema (DIMS), and its restriction, disjunction-free interval multiplicity schema (IMS). We study the complexity of the following static analysis problems: schema satisfiability, membership of a tree to the language of a schema, schema containment, as well as twig query satisfiability, implication, and containment in the presence of schema. Finally, we study the expressive power of the proposed schema languages and compare them with yardstick languages of unordered trees (FO, MSO, and Presburger constraints) and DTDs under commutative closure. Our results show that the proposed schema languages are capable of expressing many practical languages of unordered trees and enjoy desirable computational properties.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-014-9593-1</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Computation ; Computer Science ; Constrictions ; Containment ; Documents ; Extensible Markup Language ; Intervals ; Queries ; Studies ; Theory of Computation ; Trees ; XML</subject><ispartof>Theory of computing systems, 2015-08, Vol.57 (2), p.337-376</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-f606549aa5c6493ebdcad3c3eed212b0692921c923f88babbd275dcb208548633</citedby><cites>FETCH-LOGICAL-c453t-f606549aa5c6493ebdcad3c3eed212b0692921c923f88babbd275dcb208548633</cites><orcidid>0000-0002-2696-7303 ; 0000-0003-3684-3395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1700276285/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1700276285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11687,27923,27924,36059,36060,44362,74666</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01076329$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boneva, Iovka</creatorcontrib><creatorcontrib>Ciucanu, Radu</creatorcontrib><creatorcontrib>Staworko, Sławek</creatorcontrib><title>Schemas for Unordered XML on a DIME</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>We investigate schema languages for unordered XML having no relative order among siblings. First, we propose unordered regular expressions (UREs), essentially regular expressions with unordered concatenation instead of standard concatenation, that define languages of unordered words to model the allowed content of a node (i.e., collections of the labels of children). However, unrestricted UREs are computationally too expensive as we show the intractability of two fundamental decision problems for UREs: membership of an unordered word to the language of a URE and containment of two UREs. Consequently, we propose a practical and tractable restriction of UREs, disjunctive interval multiplicity expressions (DIMEs). Next, we employ DIMEs to define languages of unordered trees and propose two schema languages: disjunctive interval multiplicity schema (DIMS), and its restriction, disjunction-free interval multiplicity schema (IMS). We study the complexity of the following static analysis problems: schema satisfiability, membership of a tree to the language of a schema, schema containment, as well as twig query satisfiability, implication, and containment in the presence of schema. Finally, we study the expressive power of the proposed schema languages and compare them with yardstick languages of unordered trees (FO, MSO, and Presburger constraints) and DTDs under commutative closure. Our results show that the proposed schema languages are capable of expressing many practical languages of unordered trees and enjoy desirable computational properties.</description><subject>Analysis</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Constrictions</subject><subject>Containment</subject><subject>Documents</subject><subject>Extensible Markup Language</subject><subject>Intervals</subject><subject>Queries</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Trees</subject><subject>XML</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp10E9LwzAYBvAgCs7pB_BW2EUP0Tf_2uY45nSDDg868BbSNHUbXTOTTfDbm1oRETwlhN_78uRB6JLADQHIbgMApRwD4VgKyTA5QgPCGcPAJRx_3SnmTMApOgthAwAsBxig0ZNZ2a0OSe18smydr6y3VfKyKBLXJjq5my-m5-ik1k2wF9_nEC3vp8-TGS4eH-aTcYENF2yP6xRSwaXWwqRcMltWRlfMMGsrSmgJqaSSEiMpq_O81GVZ0UxUpqSQC56njA3Rdb93pRu18-ut9h_K6bWajQvVvQGBLGVUvpNor3q78-7tYMNebdfB2KbRrXWHoEjGouaE8khHf-jGHXwbfxJVrC1LaS6iIr0y3oXgbf2TgIDqKlZ9xTEEV13FqgtB-5kQbftq_a_N_w59An4BeS4</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Boneva, Iovka</creator><creator>Ciucanu, Radu</creator><creator>Staworko, Sławek</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2696-7303</orcidid><orcidid>https://orcid.org/0000-0003-3684-3395</orcidid></search><sort><creationdate>20150801</creationdate><title>Schemas for Unordered XML on a DIME</title><author>Boneva, Iovka ; Ciucanu, Radu ; Staworko, Sławek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-f606549aa5c6493ebdcad3c3eed212b0692921c923f88babbd275dcb208548633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Constrictions</topic><topic>Containment</topic><topic>Documents</topic><topic>Extensible Markup Language</topic><topic>Intervals</topic><topic>Queries</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Trees</topic><topic>XML</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boneva, Iovka</creatorcontrib><creatorcontrib>Ciucanu, Radu</creatorcontrib><creatorcontrib>Staworko, Sławek</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boneva, Iovka</au><au>Ciucanu, Radu</au><au>Staworko, Sławek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schemas for Unordered XML on a DIME</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>57</volume><issue>2</issue><spage>337</spage><epage>376</epage><pages>337-376</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>We investigate schema languages for unordered XML having no relative order among siblings. First, we propose unordered regular expressions (UREs), essentially regular expressions with unordered concatenation instead of standard concatenation, that define languages of unordered words to model the allowed content of a node (i.e., collections of the labels of children). However, unrestricted UREs are computationally too expensive as we show the intractability of two fundamental decision problems for UREs: membership of an unordered word to the language of a URE and containment of two UREs. Consequently, we propose a practical and tractable restriction of UREs, disjunctive interval multiplicity expressions (DIMEs). Next, we employ DIMEs to define languages of unordered trees and propose two schema languages: disjunctive interval multiplicity schema (DIMS), and its restriction, disjunction-free interval multiplicity schema (IMS). We study the complexity of the following static analysis problems: schema satisfiability, membership of a tree to the language of a schema, schema containment, as well as twig query satisfiability, implication, and containment in the presence of schema. Finally, we study the expressive power of the proposed schema languages and compare them with yardstick languages of unordered trees (FO, MSO, and Presburger constraints) and DTDs under commutative closure. Our results show that the proposed schema languages are capable of expressing many practical languages of unordered trees and enjoy desirable computational properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00224-014-9593-1</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-2696-7303</orcidid><orcidid>https://orcid.org/0000-0003-3684-3395</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2015-08, Vol.57 (2), p.337-376
issn 1432-4350
1433-0490
language eng
recordid cdi_hal_primary_oai_HAL_hal_01076329v1
source Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Analysis
Computation
Computer Science
Constrictions
Containment
Documents
Extensible Markup Language
Intervals
Queries
Studies
Theory of Computation
Trees
XML
title Schemas for Unordered XML on a DIME
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schemas%20for%20Unordered%20XML%20on%20a%20DIME&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Boneva,%20Iovka&rft.date=2015-08-01&rft.volume=57&rft.issue=2&rft.spage=337&rft.epage=376&rft.pages=337-376&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-014-9593-1&rft_dat=%3Cproquest_hal_p%3E1730104124%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-f606549aa5c6493ebdcad3c3eed212b0692921c923f88babbd275dcb208548633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1700276285&rft_id=info:pmid/&rfr_iscdi=true