Loading…

Partial state observability recovering for linear systems by additional sensor implementation

This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide ne...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) 2014-03, Vol.50 (3), p.858-863
Main Authors: Boukhobza, Taha, Hamelin, Frederic, Simon, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3
cites cdi_FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3
container_end_page 863
container_issue 3
container_start_page 858
container_title Automatica (Oxford)
container_volume 50
creator Boukhobza, Taha
Hamelin, Frederic
Simon, Christophe
description This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide new graphical necessary and sufficient conditions for the generic partial observability. Then, we study the location of additional sensors in order to satisfy the latter conditions. We provide necessary and sufficient requirements to be satisfied by these additional sensors and all their possible locations. The proposed solution is simple to implement because it is based on well-known algorithms, usually used for finding successors and predecessors of vertex subsets or on computation of maximal linkings in a digraph. All the used algorithms have polynomial complexity orders.
doi_str_mv 10.1016/j.automatica.2013.12.003
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01079050v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109813005621</els_id><sourcerecordid>oai_HAL_hal_01079050v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3</originalsourceid><addsrcrecordid>eNqFkE1LXDEUQENRcLT-h2xcdPGeN8n7yCytWC0M2EW7lHCTd1MzvI8hiQPz75thxC5dhVzOuSGHMS6gFiC6222Nb3mZMAeHtQShaiFrAPWFrYTuVSW16s7YCgDaSsBaX7DLlLbl2ggtV-zlF8YccOQpYya-2ERxjzaMIR94JLfsKYb5L_dL5GOYCSNPh5RpStweOA5DyGGZjz7NqTBh2o000Vy2lflXdu5xTHT9fl6xPz8eft8_VZvnx5_3d5vKKS1z1Q8eurXtVGN1K21LWio_QKOh1413bSt6h55k01onLTXOglcoB68UWK2cumLfTntfcTS7GCaMB7NgME93G3OcgYB-DS3sRWH1iXVxSSmS_xAEmGNSszX_k5pjUiOkKUmLenNSd5gcjj7i7EL68EtqkJ3Shft-4qj8eR8omuQCzY6GUJJmMyzh88f-AU1dk7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Partial state observability recovering for linear systems by additional sensor implementation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Boukhobza, Taha ; Hamelin, Frederic ; Simon, Christophe</creator><creatorcontrib>Boukhobza, Taha ; Hamelin, Frederic ; Simon, Christophe</creatorcontrib><description>This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide new graphical necessary and sufficient conditions for the generic partial observability. Then, we study the location of additional sensors in order to satisfy the latter conditions. We provide necessary and sufficient requirements to be satisfied by these additional sensors and all their possible locations. The proposed solution is simple to implement because it is based on well-known algorithms, usually used for finding successors and predecessors of vertex subsets or on computation of maximal linkings in a digraph. All the used algorithms have polynomial complexity orders.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2013.12.003</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Automatic ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Engineering Sciences ; Exact sciences and technology ; Graph theory ; Information retrieval. Graph ; Modelling and identification ; Partial state generic observability ; Sensor location ; Structured linear systems ; Theoretical computing</subject><ispartof>Automatica (Oxford), 2014-03, Vol.50 (3), p.858-863</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3</citedby><cites>FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3</cites><orcidid>0000-0003-1046-3554 ; 0000-0003-1891-0849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28302638$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01079050$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boukhobza, Taha</creatorcontrib><creatorcontrib>Hamelin, Frederic</creatorcontrib><creatorcontrib>Simon, Christophe</creatorcontrib><title>Partial state observability recovering for linear systems by additional sensor implementation</title><title>Automatica (Oxford)</title><description>This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide new graphical necessary and sufficient conditions for the generic partial observability. Then, we study the location of additional sensors in order to satisfy the latter conditions. We provide necessary and sufficient requirements to be satisfied by these additional sensors and all their possible locations. The proposed solution is simple to implement because it is based on well-known algorithms, usually used for finding successors and predecessors of vertex subsets or on computation of maximal linkings in a digraph. All the used algorithms have polynomial complexity orders.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Automatic</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>Modelling and identification</subject><subject>Partial state generic observability</subject><subject>Sensor location</subject><subject>Structured linear systems</subject><subject>Theoretical computing</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LXDEUQENRcLT-h2xcdPGeN8n7yCytWC0M2EW7lHCTd1MzvI8hiQPz75thxC5dhVzOuSGHMS6gFiC6222Nb3mZMAeHtQShaiFrAPWFrYTuVSW16s7YCgDaSsBaX7DLlLbl2ggtV-zlF8YccOQpYya-2ERxjzaMIR94JLfsKYb5L_dL5GOYCSNPh5RpStweOA5DyGGZjz7NqTBh2o000Vy2lflXdu5xTHT9fl6xPz8eft8_VZvnx5_3d5vKKS1z1Q8eurXtVGN1K21LWio_QKOh1413bSt6h55k01onLTXOglcoB68UWK2cumLfTntfcTS7GCaMB7NgME93G3OcgYB-DS3sRWH1iXVxSSmS_xAEmGNSszX_k5pjUiOkKUmLenNSd5gcjj7i7EL68EtqkJ3Shft-4qj8eR8omuQCzY6GUJJmMyzh88f-AU1dk7w</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Boukhobza, Taha</creator><creator>Hamelin, Frederic</creator><creator>Simon, Christophe</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1046-3554</orcidid><orcidid>https://orcid.org/0000-0003-1891-0849</orcidid></search><sort><creationdate>20140301</creationdate><title>Partial state observability recovering for linear systems by additional sensor implementation</title><author>Boukhobza, Taha ; Hamelin, Frederic ; Simon, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Automatic</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>Modelling and identification</topic><topic>Partial state generic observability</topic><topic>Sensor location</topic><topic>Structured linear systems</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukhobza, Taha</creatorcontrib><creatorcontrib>Hamelin, Frederic</creatorcontrib><creatorcontrib>Simon, Christophe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukhobza, Taha</au><au>Hamelin, Frederic</au><au>Simon, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial state observability recovering for linear systems by additional sensor implementation</atitle><jtitle>Automatica (Oxford)</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>858</spage><epage>863</epage><pages>858-863</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide new graphical necessary and sufficient conditions for the generic partial observability. Then, we study the location of additional sensors in order to satisfy the latter conditions. We provide necessary and sufficient requirements to be satisfied by these additional sensors and all their possible locations. The proposed solution is simple to implement because it is based on well-known algorithms, usually used for finding successors and predecessors of vertex subsets or on computation of maximal linkings in a digraph. All the used algorithms have polynomial complexity orders.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2013.12.003</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1046-3554</orcidid><orcidid>https://orcid.org/0000-0003-1891-0849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2014-03, Vol.50 (3), p.858-863
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_01079050v1
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Automatic
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Engineering Sciences
Exact sciences and technology
Graph theory
Information retrieval. Graph
Modelling and identification
Partial state generic observability
Sensor location
Structured linear systems
Theoretical computing
title Partial state observability recovering for linear systems by additional sensor implementation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20state%20observability%20recovering%20for%20linear%20systems%20by%20additional%20sensor%20implementation&rft.jtitle=Automatica%20(Oxford)&rft.au=Boukhobza,%20Taha&rft.date=2014-03-01&rft.volume=50&rft.issue=3&rft.spage=858&rft.epage=863&rft.pages=858-863&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2013.12.003&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01079050v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true