Loading…
Partial state observability recovering for linear systems by additional sensor implementation
This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide ne...
Saved in:
Published in: | Automatica (Oxford) 2014-03, Vol.50 (3), p.858-863 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3 |
container_end_page | 863 |
container_issue | 3 |
container_start_page | 858 |
container_title | Automatica (Oxford) |
container_volume | 50 |
creator | Boukhobza, Taha Hamelin, Frederic Simon, Christophe |
description | This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide new graphical necessary and sufficient conditions for the generic partial observability. Then, we study the location of additional sensors in order to satisfy the latter conditions. We provide necessary and sufficient requirements to be satisfied by these additional sensors and all their possible locations. The proposed solution is simple to implement because it is based on well-known algorithms, usually used for finding successors and predecessors of vertex subsets or on computation of maximal linkings in a digraph. All the used algorithms have polynomial complexity orders. |
doi_str_mv | 10.1016/j.automatica.2013.12.003 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01079050v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109813005621</els_id><sourcerecordid>oai_HAL_hal_01079050v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3</originalsourceid><addsrcrecordid>eNqFkE1LXDEUQENRcLT-h2xcdPGeN8n7yCytWC0M2EW7lHCTd1MzvI8hiQPz75thxC5dhVzOuSGHMS6gFiC6222Nb3mZMAeHtQShaiFrAPWFrYTuVSW16s7YCgDaSsBaX7DLlLbl2ggtV-zlF8YccOQpYya-2ERxjzaMIR94JLfsKYb5L_dL5GOYCSNPh5RpStweOA5DyGGZjz7NqTBh2o000Vy2lflXdu5xTHT9fl6xPz8eft8_VZvnx5_3d5vKKS1z1Q8eurXtVGN1K21LWio_QKOh1413bSt6h55k01onLTXOglcoB68UWK2cumLfTntfcTS7GCaMB7NgME93G3OcgYB-DS3sRWH1iXVxSSmS_xAEmGNSszX_k5pjUiOkKUmLenNSd5gcjj7i7EL68EtqkJ3Shft-4qj8eR8omuQCzY6GUJJmMyzh88f-AU1dk7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Partial state observability recovering for linear systems by additional sensor implementation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Boukhobza, Taha ; Hamelin, Frederic ; Simon, Christophe</creator><creatorcontrib>Boukhobza, Taha ; Hamelin, Frederic ; Simon, Christophe</creatorcontrib><description>This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide new graphical necessary and sufficient conditions for the generic partial observability. Then, we study the location of additional sensors in order to satisfy the latter conditions. We provide necessary and sufficient requirements to be satisfied by these additional sensors and all their possible locations. The proposed solution is simple to implement because it is based on well-known algorithms, usually used for finding successors and predecessors of vertex subsets or on computation of maximal linkings in a digraph. All the used algorithms have polynomial complexity orders.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2013.12.003</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Automatic ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Engineering Sciences ; Exact sciences and technology ; Graph theory ; Information retrieval. Graph ; Modelling and identification ; Partial state generic observability ; Sensor location ; Structured linear systems ; Theoretical computing</subject><ispartof>Automatica (Oxford), 2014-03, Vol.50 (3), p.858-863</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3</citedby><cites>FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3</cites><orcidid>0000-0003-1046-3554 ; 0000-0003-1891-0849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28302638$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01079050$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boukhobza, Taha</creatorcontrib><creatorcontrib>Hamelin, Frederic</creatorcontrib><creatorcontrib>Simon, Christophe</creatorcontrib><title>Partial state observability recovering for linear systems by additional sensor implementation</title><title>Automatica (Oxford)</title><description>This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide new graphical necessary and sufficient conditions for the generic partial observability. Then, we study the location of additional sensors in order to satisfy the latter conditions. We provide necessary and sufficient requirements to be satisfied by these additional sensors and all their possible locations. The proposed solution is simple to implement because it is based on well-known algorithms, usually used for finding successors and predecessors of vertex subsets or on computation of maximal linkings in a digraph. All the used algorithms have polynomial complexity orders.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Automatic</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>Modelling and identification</subject><subject>Partial state generic observability</subject><subject>Sensor location</subject><subject>Structured linear systems</subject><subject>Theoretical computing</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LXDEUQENRcLT-h2xcdPGeN8n7yCytWC0M2EW7lHCTd1MzvI8hiQPz75thxC5dhVzOuSGHMS6gFiC6222Nb3mZMAeHtQShaiFrAPWFrYTuVSW16s7YCgDaSsBaX7DLlLbl2ggtV-zlF8YccOQpYya-2ERxjzaMIR94JLfsKYb5L_dL5GOYCSNPh5RpStweOA5DyGGZjz7NqTBh2o000Vy2lflXdu5xTHT9fl6xPz8eft8_VZvnx5_3d5vKKS1z1Q8eurXtVGN1K21LWio_QKOh1413bSt6h55k01onLTXOglcoB68UWK2cumLfTntfcTS7GCaMB7NgME93G3OcgYB-DS3sRWH1iXVxSSmS_xAEmGNSszX_k5pjUiOkKUmLenNSd5gcjj7i7EL68EtqkJ3Shft-4qj8eR8omuQCzY6GUJJmMyzh88f-AU1dk7w</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Boukhobza, Taha</creator><creator>Hamelin, Frederic</creator><creator>Simon, Christophe</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1046-3554</orcidid><orcidid>https://orcid.org/0000-0003-1891-0849</orcidid></search><sort><creationdate>20140301</creationdate><title>Partial state observability recovering for linear systems by additional sensor implementation</title><author>Boukhobza, Taha ; Hamelin, Frederic ; Simon, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Automatic</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>Modelling and identification</topic><topic>Partial state generic observability</topic><topic>Sensor location</topic><topic>Structured linear systems</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukhobza, Taha</creatorcontrib><creatorcontrib>Hamelin, Frederic</creatorcontrib><creatorcontrib>Simon, Christophe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukhobza, Taha</au><au>Hamelin, Frederic</au><au>Simon, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial state observability recovering for linear systems by additional sensor implementation</atitle><jtitle>Automatica (Oxford)</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>858</spage><epage>863</epage><pages>858-863</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper deals with the problem of additional sensor location in order to recover the observability of any given part of the state for structured linear systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. We first provide new graphical necessary and sufficient conditions for the generic partial observability. Then, we study the location of additional sensors in order to satisfy the latter conditions. We provide necessary and sufficient requirements to be satisfied by these additional sensors and all their possible locations. The proposed solution is simple to implement because it is based on well-known algorithms, usually used for finding successors and predecessors of vertex subsets or on computation of maximal linkings in a digraph. All the used algorithms have polynomial complexity orders.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2013.12.003</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1046-3554</orcidid><orcidid>https://orcid.org/0000-0003-1891-0849</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2014-03, Vol.50 (3), p.858-863 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01079050v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Automatic Computer science control theory systems Control system analysis Control theory. Systems Engineering Sciences Exact sciences and technology Graph theory Information retrieval. Graph Modelling and identification Partial state generic observability Sensor location Structured linear systems Theoretical computing |
title | Partial state observability recovering for linear systems by additional sensor implementation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20state%20observability%20recovering%20for%20linear%20systems%20by%20additional%20sensor%20implementation&rft.jtitle=Automatica%20(Oxford)&rft.au=Boukhobza,%20Taha&rft.date=2014-03-01&rft.volume=50&rft.issue=3&rft.spage=858&rft.epage=863&rft.pages=858-863&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2013.12.003&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01079050v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-7df069b634b852b5e823fd0480784fc5517cafe245bc2be4cb0f3a2df330b83c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |