Loading…
Certified Reduced Basis Method for the Electric Field Integral Equation
In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this p...
Saved in:
Published in: | SIAM journal on scientific computing 2012-01, Vol.34 (3), p.A1777-A1799 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3 |
container_end_page | A1799 |
container_issue | 3 |
container_start_page | A1777 |
container_title | SIAM journal on scientific computing |
container_volume | 34 |
creator | Hesthaven, J S Stamm, B Zhang, S |
description | In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. A central difficulty of the certified method is that the intrinsic solution space of the EFIE is ${\boldsymbol{H}^{-1/2}_{{\rm div}}(\Gamma)}$, inducing a relatively complicated norm. Since the measured error consists of the difference between the reduced basis solution and the boundary element solution, which is a member of the discrete boundary element space, we clarify that the intrinsic norm can be replaced by an alternative norm and in this work use the $\boldsymbol{H}({\rm div})$-norm, which is computable and demonstrated to not degrade the quality of the error estimator. A successive constraint method (SCM) for complex matrices is discussed in detail, and numerical tests for the SCM and then the certified RBM confirm the analysis. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/110848268 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01090932v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2749789421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsHv0HAix5Wk012sznW0n9QEUTPIZvM2pRt0yZZwW_vlkoF5zLD8OPNvIfQLSWPlDLxRCmpeJWX1RkaUCKLTFApzg9zybMqF8UluopxTQgtucwHaDaGkFzjwOI3sJ3p-7OOLuIXSCtvceMDTivAkxZMCs7gqYPW4sU2wWfQLZ7sO52c316ji0a3EW5--xB9TCfv43m2fJ0txqNlZvKCp4yXUoq6klbWlFJeN1RqbYTNibZQ2cZKIEbXQhaG6aIphaSW10wWYIkkVc2G6OGou9Kt2gW30eFbee3UfLRUhx3pXRPJ8i_as_dHdhf8voOY1MZFA22rt-C7qPrASt6zfQ3R3T907buw7Z0oSpgo8lII9nfcBB9jgOb0ASUHNaFO8bMf8qd0Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037526773</pqid></control><display><type>article</type><title>Certified Reduced Basis Method for the Electric Field Integral Equation</title><source>ABI/INFORM global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Hesthaven, J S ; Stamm, B ; Zhang, S</creator><creatorcontrib>Hesthaven, J S ; Stamm, B ; Zhang, S</creatorcontrib><description>In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. A central difficulty of the certified method is that the intrinsic solution space of the EFIE is ${\boldsymbol{H}^{-1/2}_{{\rm div}}(\Gamma)}$, inducing a relatively complicated norm. Since the measured error consists of the difference between the reduced basis solution and the boundary element solution, which is a member of the discrete boundary element space, we clarify that the intrinsic norm can be replaced by an alternative norm and in this work use the $\boldsymbol{H}({\rm div})$-norm, which is computable and demonstrated to not degrade the quality of the error estimator. A successive constraint method (SCM) for complex matrices is discussed in detail, and numerical tests for the SCM and then the certified RBM confirm the analysis. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/110848268</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Boundary element method ; Electric fields ; Error analysis ; Errors ; Estimators ; Integral equations ; Mathematical analysis ; Mathematical models ; Mathematics ; Norms ; Numerical Analysis</subject><ispartof>SIAM journal on scientific computing, 2012-01, Vol.34 (3), p.A1777-A1799</ispartof><rights>2012, Society for Industrial and Applied Mathematics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3</citedby><cites>FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3</cites><orcidid>0000-0002-2967-790X ; 0000-0003-3375-483X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1037526773?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,3171,11668,27903,27904,36039,36040,44342</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01090932$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hesthaven, J S</creatorcontrib><creatorcontrib>Stamm, B</creatorcontrib><creatorcontrib>Zhang, S</creatorcontrib><title>Certified Reduced Basis Method for the Electric Field Integral Equation</title><title>SIAM journal on scientific computing</title><description>In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. A central difficulty of the certified method is that the intrinsic solution space of the EFIE is ${\boldsymbol{H}^{-1/2}_{{\rm div}}(\Gamma)}$, inducing a relatively complicated norm. Since the measured error consists of the difference between the reduced basis solution and the boundary element solution, which is a member of the discrete boundary element space, we clarify that the intrinsic norm can be replaced by an alternative norm and in this work use the $\boldsymbol{H}({\rm div})$-norm, which is computable and demonstrated to not degrade the quality of the error estimator. A successive constraint method (SCM) for complex matrices is discussed in detail, and numerical tests for the SCM and then the certified RBM confirm the analysis. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary element method</subject><subject>Electric fields</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Estimators</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Norms</subject><subject>Numerical Analysis</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkE9LAzEQxYMoWKsHv0HAix5Wk012sznW0n9QEUTPIZvM2pRt0yZZwW_vlkoF5zLD8OPNvIfQLSWPlDLxRCmpeJWX1RkaUCKLTFApzg9zybMqF8UluopxTQgtucwHaDaGkFzjwOI3sJ3p-7OOLuIXSCtvceMDTivAkxZMCs7gqYPW4sU2wWfQLZ7sO52c316ji0a3EW5--xB9TCfv43m2fJ0txqNlZvKCp4yXUoq6klbWlFJeN1RqbYTNibZQ2cZKIEbXQhaG6aIphaSW10wWYIkkVc2G6OGou9Kt2gW30eFbee3UfLRUhx3pXRPJ8i_as_dHdhf8voOY1MZFA22rt-C7qPrASt6zfQ3R3T907buw7Z0oSpgo8lII9nfcBB9jgOb0ASUHNaFO8bMf8qd0Rw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Hesthaven, J S</creator><creator>Stamm, B</creator><creator>Zhang, S</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2967-790X</orcidid><orcidid>https://orcid.org/0000-0003-3375-483X</orcidid></search><sort><creationdate>20120101</creationdate><title>Certified Reduced Basis Method for the Electric Field Integral Equation</title><author>Hesthaven, J S ; Stamm, B ; Zhang, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary element method</topic><topic>Electric fields</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Estimators</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Norms</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hesthaven, J S</creatorcontrib><creatorcontrib>Stamm, B</creatorcontrib><creatorcontrib>Zhang, S</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesthaven, J S</au><au>Stamm, B</au><au>Zhang, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certified Reduced Basis Method for the Electric Field Integral Equation</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>34</volume><issue>3</issue><spage>A1777</spage><epage>A1799</epage><pages>A1777-A1799</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. A central difficulty of the certified method is that the intrinsic solution space of the EFIE is ${\boldsymbol{H}^{-1/2}_{{\rm div}}(\Gamma)}$, inducing a relatively complicated norm. Since the measured error consists of the difference between the reduced basis solution and the boundary element solution, which is a member of the discrete boundary element space, we clarify that the intrinsic norm can be replaced by an alternative norm and in this work use the $\boldsymbol{H}({\rm div})$-norm, which is computable and demonstrated to not degrade the quality of the error estimator. A successive constraint method (SCM) for complex matrices is discussed in detail, and numerical tests for the SCM and then the certified RBM confirm the analysis. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110848268</doi><orcidid>https://orcid.org/0000-0002-2967-790X</orcidid><orcidid>https://orcid.org/0000-0003-3375-483X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2012-01, Vol.34 (3), p.A1777-A1799 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01090932v1 |
source | ABI/INFORM global; LOCUS - SIAM's Online Journal Archive |
subjects | Applied mathematics Approximation Boundary element method Electric fields Error analysis Errors Estimators Integral equations Mathematical analysis Mathematical models Mathematics Norms Numerical Analysis |
title | Certified Reduced Basis Method for the Electric Field Integral Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certified%20Reduced%20Basis%20Method%20for%20the%20Electric%20Field%20Integral%20Equation&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Hesthaven,%20J%20S&rft.date=2012-01-01&rft.volume=34&rft.issue=3&rft.spage=A1777&rft.epage=A1799&rft.pages=A1777-A1799&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/110848268&rft_dat=%3Cproquest_hal_p%3E2749789421%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1037526773&rft_id=info:pmid/&rfr_iscdi=true |