Loading…

Certified Reduced Basis Method for the Electric Field Integral Equation

In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this p...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on scientific computing 2012-01, Vol.34 (3), p.A1777-A1799
Main Authors: Hesthaven, J S, Stamm, B, Zhang, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3
cites cdi_FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3
container_end_page A1799
container_issue 3
container_start_page A1777
container_title SIAM journal on scientific computing
container_volume 34
creator Hesthaven, J S
Stamm, B
Zhang, S
description In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. A central difficulty of the certified method is that the intrinsic solution space of the EFIE is ${\boldsymbol{H}^{-1/2}_{{\rm div}}(\Gamma)}$, inducing a relatively complicated norm. Since the measured error consists of the difference between the reduced basis solution and the boundary element solution, which is a member of the discrete boundary element space, we clarify that the intrinsic norm can be replaced by an alternative norm and in this work use the $\boldsymbol{H}({\rm div})$-norm, which is computable and demonstrated to not degrade the quality of the error estimator. A successive constraint method (SCM) for complex matrices is discussed in detail, and numerical tests for the SCM and then the certified RBM confirm the analysis. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/110848268
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01090932v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2749789421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsHv0HAix5Wk012sznW0n9QEUTPIZvM2pRt0yZZwW_vlkoF5zLD8OPNvIfQLSWPlDLxRCmpeJWX1RkaUCKLTFApzg9zybMqF8UluopxTQgtucwHaDaGkFzjwOI3sJ3p-7OOLuIXSCtvceMDTivAkxZMCs7gqYPW4sU2wWfQLZ7sO52c316ji0a3EW5--xB9TCfv43m2fJ0txqNlZvKCp4yXUoq6klbWlFJeN1RqbYTNibZQ2cZKIEbXQhaG6aIphaSW10wWYIkkVc2G6OGou9Kt2gW30eFbee3UfLRUhx3pXRPJ8i_as_dHdhf8voOY1MZFA22rt-C7qPrASt6zfQ3R3T907buw7Z0oSpgo8lII9nfcBB9jgOb0ASUHNaFO8bMf8qd0Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037526773</pqid></control><display><type>article</type><title>Certified Reduced Basis Method for the Electric Field Integral Equation</title><source>ABI/INFORM global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Hesthaven, J S ; Stamm, B ; Zhang, S</creator><creatorcontrib>Hesthaven, J S ; Stamm, B ; Zhang, S</creatorcontrib><description>In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. A central difficulty of the certified method is that the intrinsic solution space of the EFIE is ${\boldsymbol{H}^{-1/2}_{{\rm div}}(\Gamma)}$, inducing a relatively complicated norm. Since the measured error consists of the difference between the reduced basis solution and the boundary element solution, which is a member of the discrete boundary element space, we clarify that the intrinsic norm can be replaced by an alternative norm and in this work use the $\boldsymbol{H}({\rm div})$-norm, which is computable and demonstrated to not degrade the quality of the error estimator. A successive constraint method (SCM) for complex matrices is discussed in detail, and numerical tests for the SCM and then the certified RBM confirm the analysis. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/110848268</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Boundary element method ; Electric fields ; Error analysis ; Errors ; Estimators ; Integral equations ; Mathematical analysis ; Mathematical models ; Mathematics ; Norms ; Numerical Analysis</subject><ispartof>SIAM journal on scientific computing, 2012-01, Vol.34 (3), p.A1777-A1799</ispartof><rights>2012, Society for Industrial and Applied Mathematics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3</citedby><cites>FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3</cites><orcidid>0000-0002-2967-790X ; 0000-0003-3375-483X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1037526773?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,3171,11668,27903,27904,36039,36040,44342</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01090932$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hesthaven, J S</creatorcontrib><creatorcontrib>Stamm, B</creatorcontrib><creatorcontrib>Zhang, S</creatorcontrib><title>Certified Reduced Basis Method for the Electric Field Integral Equation</title><title>SIAM journal on scientific computing</title><description>In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. A central difficulty of the certified method is that the intrinsic solution space of the EFIE is ${\boldsymbol{H}^{-1/2}_{{\rm div}}(\Gamma)}$, inducing a relatively complicated norm. Since the measured error consists of the difference between the reduced basis solution and the boundary element solution, which is a member of the discrete boundary element space, we clarify that the intrinsic norm can be replaced by an alternative norm and in this work use the $\boldsymbol{H}({\rm div})$-norm, which is computable and demonstrated to not degrade the quality of the error estimator. A successive constraint method (SCM) for complex matrices is discussed in detail, and numerical tests for the SCM and then the certified RBM confirm the analysis. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary element method</subject><subject>Electric fields</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Estimators</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Norms</subject><subject>Numerical Analysis</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkE9LAzEQxYMoWKsHv0HAix5Wk012sznW0n9QEUTPIZvM2pRt0yZZwW_vlkoF5zLD8OPNvIfQLSWPlDLxRCmpeJWX1RkaUCKLTFApzg9zybMqF8UluopxTQgtucwHaDaGkFzjwOI3sJ3p-7OOLuIXSCtvceMDTivAkxZMCs7gqYPW4sU2wWfQLZ7sO52c316ji0a3EW5--xB9TCfv43m2fJ0txqNlZvKCp4yXUoq6klbWlFJeN1RqbYTNibZQ2cZKIEbXQhaG6aIphaSW10wWYIkkVc2G6OGou9Kt2gW30eFbee3UfLRUhx3pXRPJ8i_as_dHdhf8voOY1MZFA22rt-C7qPrASt6zfQ3R3T907buw7Z0oSpgo8lII9nfcBB9jgOb0ASUHNaFO8bMf8qd0Rw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Hesthaven, J S</creator><creator>Stamm, B</creator><creator>Zhang, S</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2967-790X</orcidid><orcidid>https://orcid.org/0000-0003-3375-483X</orcidid></search><sort><creationdate>20120101</creationdate><title>Certified Reduced Basis Method for the Electric Field Integral Equation</title><author>Hesthaven, J S ; Stamm, B ; Zhang, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary element method</topic><topic>Electric fields</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Estimators</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Norms</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hesthaven, J S</creatorcontrib><creatorcontrib>Stamm, B</creatorcontrib><creatorcontrib>Zhang, S</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesthaven, J S</au><au>Stamm, B</au><au>Zhang, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certified Reduced Basis Method for the Electric Field Integral Equation</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>34</volume><issue>3</issue><spage>A1777</spage><epage>A1799</epage><pages>A1777-A1799</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>In [B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532--5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the greedy-based snapshot selection. In this paper, we extend this work and propose a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. A central difficulty of the certified method is that the intrinsic solution space of the EFIE is ${\boldsymbol{H}^{-1/2}_{{\rm div}}(\Gamma)}$, inducing a relatively complicated norm. Since the measured error consists of the difference between the reduced basis solution and the boundary element solution, which is a member of the discrete boundary element space, we clarify that the intrinsic norm can be replaced by an alternative norm and in this work use the $\boldsymbol{H}({\rm div})$-norm, which is computable and demonstrated to not degrade the quality of the error estimator. A successive constraint method (SCM) for complex matrices is discussed in detail, and numerical tests for the SCM and then the certified RBM confirm the analysis. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110848268</doi><orcidid>https://orcid.org/0000-0002-2967-790X</orcidid><orcidid>https://orcid.org/0000-0003-3375-483X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2012-01, Vol.34 (3), p.A1777-A1799
issn 1064-8275
1095-7197
language eng
recordid cdi_hal_primary_oai_HAL_hal_01090932v1
source ABI/INFORM global; LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Approximation
Boundary element method
Electric fields
Error analysis
Errors
Estimators
Integral equations
Mathematical analysis
Mathematical models
Mathematics
Norms
Numerical Analysis
title Certified Reduced Basis Method for the Electric Field Integral Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certified%20Reduced%20Basis%20Method%20for%20the%20Electric%20Field%20Integral%20Equation&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Hesthaven,%20J%20S&rft.date=2012-01-01&rft.volume=34&rft.issue=3&rft.spage=A1777&rft.epage=A1799&rft.pages=A1777-A1799&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/110848268&rft_dat=%3Cproquest_hal_p%3E2749789421%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-46997b89d9b1114bf19aac7d20ade8dfd9e0cab795c3a5f6791d4b395ed0908b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1037526773&rft_id=info:pmid/&rfr_iscdi=true