Loading…
Application of optical methods to investigate the non-linear asymmetric behavior of ceramics exhibiting large strain to rupture by four-points bending test
Large strain to rupture behavior is essential, for refractory materials, to improve their thermal shock resistance. The non-linear comportment under loading of specific developed ceramics associated to their type of microstructure (micro-cracked) leads to the possibility to increase their strain-to-...
Saved in:
Published in: | Journal of the European Ceramic Society 2012-12, Vol.32 (16), p.4073-4081 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large strain to rupture behavior is essential, for refractory materials, to improve their thermal shock resistance. The non-linear comportment under loading of specific developed ceramics associated to their type of microstructure (micro-cracked) leads to the possibility to increase their strain-to-rupture level. Aluminum titanate (AT: Al2TiO5) ceramics are one of these materials and are characterized by a mechanical behavior strongly dependent on their microstructure. Indeed, this behavior can vary from a fragile one to a large non-linear one according to the degree of microcracking present within the material. The paper here presented is devoted to the study of this nonlinear behavior thanks to four-points bending test associated with digital image correlation technique to determine kinematics fields. Results highlight the asymmetric character of the mechanical behavior of a microcracked aluminum titanate. A comparison between the Young moduli and fracture strength obtained using conventional and ones identified by digital image correlation will be done. |
---|---|
ISSN: | 0955-2219 1873-619X |
DOI: | 10.1016/j.jeurceramsoc.2012.06.016 |