Loading…
Hausdorff volume in non equiregular sub-Riemannian manifolds
In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give condit...
Saved in:
Published in: | Nonlinear analysis 2015-10, Vol.126, p.345-377 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43 |
container_end_page | 377 |
container_issue | |
container_start_page | 345 |
container_title | Nonlinear analysis |
container_volume | 126 |
creator | Ghezzi, R. Jean, F. |
description | In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures). |
doi_str_mv | 10.1016/j.na.2015.06.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01107470v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X15002084</els_id><sourcerecordid>1770298566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePfaoh9ZJ2iSteFlEXWFBEAVvIc2HZmmT3WS74H9vy4o3T8MMv_eG9xC6xFBgwOxmXXhZEMC0AFYAxkdohmte5pRgeoxmUDKS04p9nKKzlNYAgHnJZuhuKYekQ7Q224du6E3mfOaDz8x2cNF8Dp2MWRra_NWZXnrvpM_G6WzodDpHJ1Z2yVz8zjl6f3x4u1_mq5en5_vFKlcVL3c5tbzVlLW8hlK1qrVNxQAaCjWzVBKjbTNuNRDJCWk041RrKVVVN8DByqqco-uD75fsxCa6XsZvEaQTy8VKTLcxL_CKw56M7NWB3cSwHUzaid4lZbpOehOGJDDnQJqaMjaicEBVDClFY_-8MYipVLEWXoqpVAFsejJKbg8SM8bdOxNFUs54ZfRYltoJHdz_4h8vo30M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770298566</pqid></control><display><type>article</type><title>Hausdorff volume in non equiregular sub-Riemannian manifolds</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Ghezzi, R. ; Jean, F.</creator><creatorcontrib>Ghezzi, R. ; Jean, F.</creatorcontrib><description>In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures).</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2015.06.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Decomposition ; Differential Geometry ; Geometric measure theory ; Hausdorff measures ; Intrinsic volumes ; Manifolds ; Mathematics ; Metric Geometry ; Nonlinearity ; Optimization and Control ; Radon ; Sub-Riemannian geometry</subject><ispartof>Nonlinear analysis, 2015-10, Vol.126, p.345-377</ispartof><rights>2015 Elsevier Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43</citedby><cites>FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43</cites><orcidid>0000-0001-8170-076X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X15002084$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3564,27924,27925,46003</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01107470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghezzi, R.</creatorcontrib><creatorcontrib>Jean, F.</creatorcontrib><title>Hausdorff volume in non equiregular sub-Riemannian manifolds</title><title>Nonlinear analysis</title><description>In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures).</description><subject>Decomposition</subject><subject>Differential Geometry</subject><subject>Geometric measure theory</subject><subject>Hausdorff measures</subject><subject>Intrinsic volumes</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Metric Geometry</subject><subject>Nonlinearity</subject><subject>Optimization and Control</subject><subject>Radon</subject><subject>Sub-Riemannian geometry</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePfaoh9ZJ2iSteFlEXWFBEAVvIc2HZmmT3WS74H9vy4o3T8MMv_eG9xC6xFBgwOxmXXhZEMC0AFYAxkdohmte5pRgeoxmUDKS04p9nKKzlNYAgHnJZuhuKYekQ7Q224du6E3mfOaDz8x2cNF8Dp2MWRra_NWZXnrvpM_G6WzodDpHJ1Z2yVz8zjl6f3x4u1_mq5en5_vFKlcVL3c5tbzVlLW8hlK1qrVNxQAaCjWzVBKjbTNuNRDJCWk041RrKVVVN8DByqqco-uD75fsxCa6XsZvEaQTy8VKTLcxL_CKw56M7NWB3cSwHUzaid4lZbpOehOGJDDnQJqaMjaicEBVDClFY_-8MYipVLEWXoqpVAFsejJKbg8SM8bdOxNFUs54ZfRYltoJHdz_4h8vo30M</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Ghezzi, R.</creator><creator>Jean, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8170-076X</orcidid></search><sort><creationdate>20151001</creationdate><title>Hausdorff volume in non equiregular sub-Riemannian manifolds</title><author>Ghezzi, R. ; Jean, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decomposition</topic><topic>Differential Geometry</topic><topic>Geometric measure theory</topic><topic>Hausdorff measures</topic><topic>Intrinsic volumes</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Metric Geometry</topic><topic>Nonlinearity</topic><topic>Optimization and Control</topic><topic>Radon</topic><topic>Sub-Riemannian geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghezzi, R.</creatorcontrib><creatorcontrib>Jean, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghezzi, R.</au><au>Jean, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hausdorff volume in non equiregular sub-Riemannian manifolds</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>126</volume><spage>345</spage><epage>377</epage><pages>345-377</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2015.06.011</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-8170-076X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2015-10, Vol.126, p.345-377 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01107470v2 |
source | ScienceDirect Freedom Collection; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Decomposition Differential Geometry Geometric measure theory Hausdorff measures Intrinsic volumes Manifolds Mathematics Metric Geometry Nonlinearity Optimization and Control Radon Sub-Riemannian geometry |
title | Hausdorff volume in non equiregular sub-Riemannian manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hausdorff%20volume%20in%20non%20equiregular%20sub-Riemannian%20manifolds&rft.jtitle=Nonlinear%20analysis&rft.au=Ghezzi,%20R.&rft.date=2015-10-01&rft.volume=126&rft.spage=345&rft.epage=377&rft.pages=345-377&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2015.06.011&rft_dat=%3Cproquest_hal_p%3E1770298566%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770298566&rft_id=info:pmid/&rfr_iscdi=true |