Loading…

Hausdorff volume in non equiregular sub-Riemannian manifolds

In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give condit...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2015-10, Vol.126, p.345-377
Main Authors: Ghezzi, R., Jean, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43
cites cdi_FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43
container_end_page 377
container_issue
container_start_page 345
container_title Nonlinear analysis
container_volume 126
creator Ghezzi, R.
Jean, F.
description In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures).
doi_str_mv 10.1016/j.na.2015.06.011
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01107470v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X15002084</els_id><sourcerecordid>1770298566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePfaoh9ZJ2iSteFlEXWFBEAVvIc2HZmmT3WS74H9vy4o3T8MMv_eG9xC6xFBgwOxmXXhZEMC0AFYAxkdohmte5pRgeoxmUDKS04p9nKKzlNYAgHnJZuhuKYekQ7Q224du6E3mfOaDz8x2cNF8Dp2MWRra_NWZXnrvpM_G6WzodDpHJ1Z2yVz8zjl6f3x4u1_mq5en5_vFKlcVL3c5tbzVlLW8hlK1qrVNxQAaCjWzVBKjbTNuNRDJCWk041RrKVVVN8DByqqco-uD75fsxCa6XsZvEaQTy8VKTLcxL_CKw56M7NWB3cSwHUzaid4lZbpOehOGJDDnQJqaMjaicEBVDClFY_-8MYipVLEWXoqpVAFsejJKbg8SM8bdOxNFUs54ZfRYltoJHdz_4h8vo30M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770298566</pqid></control><display><type>article</type><title>Hausdorff volume in non equiregular sub-Riemannian manifolds</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Ghezzi, R. ; Jean, F.</creator><creatorcontrib>Ghezzi, R. ; Jean, F.</creatorcontrib><description>In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures).</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2015.06.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Decomposition ; Differential Geometry ; Geometric measure theory ; Hausdorff measures ; Intrinsic volumes ; Manifolds ; Mathematics ; Metric Geometry ; Nonlinearity ; Optimization and Control ; Radon ; Sub-Riemannian geometry</subject><ispartof>Nonlinear analysis, 2015-10, Vol.126, p.345-377</ispartof><rights>2015 Elsevier Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43</citedby><cites>FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43</cites><orcidid>0000-0001-8170-076X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X15002084$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3564,27924,27925,46003</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01107470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghezzi, R.</creatorcontrib><creatorcontrib>Jean, F.</creatorcontrib><title>Hausdorff volume in non equiregular sub-Riemannian manifolds</title><title>Nonlinear analysis</title><description>In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures).</description><subject>Decomposition</subject><subject>Differential Geometry</subject><subject>Geometric measure theory</subject><subject>Hausdorff measures</subject><subject>Intrinsic volumes</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Metric Geometry</subject><subject>Nonlinearity</subject><subject>Optimization and Control</subject><subject>Radon</subject><subject>Sub-Riemannian geometry</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePfaoh9ZJ2iSteFlEXWFBEAVvIc2HZmmT3WS74H9vy4o3T8MMv_eG9xC6xFBgwOxmXXhZEMC0AFYAxkdohmte5pRgeoxmUDKS04p9nKKzlNYAgHnJZuhuKYekQ7Q224du6E3mfOaDz8x2cNF8Dp2MWRra_NWZXnrvpM_G6WzodDpHJ1Z2yVz8zjl6f3x4u1_mq5en5_vFKlcVL3c5tbzVlLW8hlK1qrVNxQAaCjWzVBKjbTNuNRDJCWk041RrKVVVN8DByqqco-uD75fsxCa6XsZvEaQTy8VKTLcxL_CKw56M7NWB3cSwHUzaid4lZbpOehOGJDDnQJqaMjaicEBVDClFY_-8MYipVLEWXoqpVAFsejJKbg8SM8bdOxNFUs54ZfRYltoJHdz_4h8vo30M</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Ghezzi, R.</creator><creator>Jean, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8170-076X</orcidid></search><sort><creationdate>20151001</creationdate><title>Hausdorff volume in non equiregular sub-Riemannian manifolds</title><author>Ghezzi, R. ; Jean, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decomposition</topic><topic>Differential Geometry</topic><topic>Geometric measure theory</topic><topic>Hausdorff measures</topic><topic>Intrinsic volumes</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Metric Geometry</topic><topic>Nonlinearity</topic><topic>Optimization and Control</topic><topic>Radon</topic><topic>Sub-Riemannian geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghezzi, R.</creatorcontrib><creatorcontrib>Jean, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghezzi, R.</au><au>Jean, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hausdorff volume in non equiregular sub-Riemannian manifolds</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>126</volume><spage>345</spage><epage>377</epage><pages>345-377</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2015.06.011</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-8170-076X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2015-10, Vol.126, p.345-377
issn 0362-546X
1873-5215
language eng
recordid cdi_hal_primary_oai_HAL_hal_01107470v2
source ScienceDirect Freedom Collection; Backfile Package - Mathematics (Legacy) [YMT]
subjects Decomposition
Differential Geometry
Geometric measure theory
Hausdorff measures
Intrinsic volumes
Manifolds
Mathematics
Metric Geometry
Nonlinearity
Optimization and Control
Radon
Sub-Riemannian geometry
title Hausdorff volume in non equiregular sub-Riemannian manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hausdorff%20volume%20in%20non%20equiregular%20sub-Riemannian%20manifolds&rft.jtitle=Nonlinear%20analysis&rft.au=Ghezzi,%20R.&rft.date=2015-10-01&rft.volume=126&rft.spage=345&rft.epage=377&rft.pages=345-377&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2015.06.011&rft_dat=%3Cproquest_hal_p%3E1770298566%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-5f7bd56b7803cbcbf9460095086f5a2edf9095802a7229d675ddaac489070fa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770298566&rft_id=info:pmid/&rfr_iscdi=true