Loading…

Clustering effects in optical properties of BGaAs/GaAs epilayers

We report on the further investigation of the effect of boron incorporation on GaAs grown at 580 °C temperature on GaAs (0 0 1) substrate by metal organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD) has been used to determine the lattice mismatch and to estimate the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of luminescence 2009-09, Vol.129 (9), p.1010-1014
Main Authors: Hamila, R., Saidi, F., Fouzri, A., Auvray, L., Monteil, Y., Maaref, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the further investigation of the effect of boron incorporation on GaAs grown at 580 °C temperature on GaAs (0 0 1) substrate by metal organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD) has been used to determine the lattice mismatch and to estimate the boron concentration. Temperature-dependent photoluminescence has been carried out to investigate B x Ga 1− x As/GaAs epilayers with varied boron composition ( x=1.64% and 3.04%). Low temperature (10 K) PL study has shown an asymmetric and broad PL band around 1.3 eV of the emission energies with a decrease of the PL intensity with increasing boron composition. The evolution of the emission energies with temperature can be described by Varshni law for the high temperature range ( T⩾120 and 80 K) for boron composition x=1.64% and 3.04%, respectively, while a relative discrepancy has been found to occur at low temperature. Moreover, depending on the temperature range, the PL intensity quenching is found to be thermally ensured by three activation energies. These results are attributed to the localized states induced by the non-uniform insertion of boron and the clustering of the boron atom in BGaAs bulk.
ISSN:0022-2313
1872-7883
DOI:10.1016/j.jlumin.2009.04.013