Loading…
Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events
We study numerically and experimentally the dynamics of an incoherently pumped passive optical fiber ring cavity nearby the zero-dispersion wavelength of the fiber. We show that the cavity exhibits a quasisoliton turbulence dynamics, whose properties are controlled by the degree of coherence of the...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2015-02, Vol.91 (2), Article 023823 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study numerically and experimentally the dynamics of an incoherently pumped passive optical fiber ring cavity nearby the zero-dispersion wavelength of the fiber. We show that the cavity exhibits a quasisoliton turbulence dynamics, whose properties are controlled by the degree of coherence of the injected pump wave: As the coherence of the pump is degraded, the cavity exhibits a transition from the quasisoliton condensation regime toward the weakly nonlinear turbulent regime characterized by short-lived rogue wave events. This behavior is reminiscent of the corresponding dynamics obtained in the purely conservative (Hamiltonian) problem. We report experimental results of an all-integrated incoherently pumped fiber cavity that provide some spectral and temporal complementary signatures of the processes predicted numerically. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.91.023823 |