Loading…

Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models

Analysis of satellite altimetry observations, transports estimates from a mooring array, as well as output from two different numerical ocean circulation models (ROMS and HYCOM), have been used to investigate the mesoscale eddy properties and transport variability in the Mozambique Channel. The powe...

Full description

Saved in:
Bibliographic Details
Published in:Deep-sea research. Part II, Topical studies in oceanography Topical studies in oceanography, 2014-02, Vol.100, p.38-53
Main Authors: Halo, I., Backeberg, B., Penven, P., Ansorge, I., Reason, C., Ullgren, J.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analysis of satellite altimetry observations, transports estimates from a mooring array, as well as output from two different numerical ocean circulation models (ROMS and HYCOM), have been used to investigate the mesoscale eddy properties and transport variability in the Mozambique Channel. The power spectral density of model transports at 17°S indicates the models ability to represent the transport variability at mesoscale frequencies (range between 3yr−1 and 10yr−1). The models have shown an exaggerated representation of the lower frequencies (~ 10yr−1). The overestimation of the seasonal cycle appears in our case not to be related to a misrepresentation of the mesoscale variability. The eddies were identified using an automatic eddy tracking scheme. Both anticyclonic and cyclonic eddies appeared to have a preferred site of formation within the channel. The density distribution showed that the anticyclones exhibited a bi-modal distribution: the first mode was associated with the typical scale for the oceanic mesoscale turbulence, while the second mode was related to the passage of large rings at a frequency of about 4–7 per year. On the other hand, cyclonic eddies had a single mode distribution that follows the first baroclinic Rossby radius of deformation, which is a typical scale for the oceanic mesoscale surface eddy variability, suggesting that their formation is associated with baroclinic instability. Eddy mean amplitudes per class of radius (
ISSN:0967-0645
1879-0100
DOI:10.1016/j.dsr2.2013.10.015