Loading…

Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code

FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100fs) pulses with ultrahigh peak brightness and wavelengths from 100nm to 4nm. A section fully dedicated to the photon transport and analysi...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2013-05, Vol.710, p.131-138
Main Authors: Raimondi, L., Svetina, C., Mahne, N., Cocco, D., Abrami, A., De Marco, M., Fava, C., Gerusina, S., Gobessi, R., Capotondi, F., Pedersoli, E., Kiskinova, M., De Ninno, G., Zeitoun, P., Dovillaire, G., Lambert, G., Boutu, W., Merdji, H., Gonzalez, A.I., Gauthier, D., Zangrando, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-6833924a83b22a6702dd0d6a1f65be5b0b418d6419c02c0e902a74e0a03fb6dd3
cites cdi_FETCH-LOGICAL-c334t-6833924a83b22a6702dd0d6a1f65be5b0b418d6419c02c0e902a74e0a03fb6dd3
container_end_page 138
container_issue
container_start_page 131
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 710
creator Raimondi, L.
Svetina, C.
Mahne, N.
Cocco, D.
Abrami, A.
De Marco, M.
Fava, C.
Gerusina, S.
Gobessi, R.
Capotondi, F.
Pedersoli, E.
Kiskinova, M.
De Ninno, G.
Zeitoun, P.
Dovillaire, G.
Lambert, G.
Boutu, W.
Merdji, H.
Gonzalez, A.I.
Gauthier, D.
Zangrando, M.
description FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100fs) pulses with ultrahigh peak brightness and wavelengths from 100nm to 4nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.
doi_str_mv 10.1016/j.nima.2012.11.039
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01163759v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900212013769</els_id><sourcerecordid>S0168900212013769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6833924a83b22a6702dd0d6a1f65be5b0b418d6419c02c0e902a74e0a03fb6dd3</originalsourceid><addsrcrecordid>eNp9kMFOGzEQhq2qSE2hL9CTrz3sMrY33t2qh9IoQERQpVLE0fLas42jJF6tTVA4ceANeEOeBK9COTKX0T_6_xnNR8hXBjkDJo-X-catdc6B8ZyxHET9gYxYVfKsHpfyIxklU5XVAPwT-RzCElLVZTUij5fO9L715ja4zT_qWxoXSE-nfy5nP6crjLHXSc1pg3pN71xcUE0vnh-eflFtotsi9V10JtCwCxHX3-lV5yMN7h5p16N1yeM3gTY7qrtu5Ywe9P8rN7OrKTXe4hE5aPUq4JfXfkiuT6d_J-fZ_PfZbHIyz4wQRcxkJUTNC12JhnMtS-DWgpWatXLc4LiBpmCVlQWrDXADWAPXZYGgQbSNtFYckm_7vQu9Ul2fiPU75bVT5ydzNcyAMSnKcb1lycv33oQnhB7btwADNTBXSzUwVwNzxZhKzFPoxz6E6Yutw14F43BjEokeTVTWu_fiL0-OirE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code</title><source>ScienceDirect Freedom Collection</source><creator>Raimondi, L. ; Svetina, C. ; Mahne, N. ; Cocco, D. ; Abrami, A. ; De Marco, M. ; Fava, C. ; Gerusina, S. ; Gobessi, R. ; Capotondi, F. ; Pedersoli, E. ; Kiskinova, M. ; De Ninno, G. ; Zeitoun, P. ; Dovillaire, G. ; Lambert, G. ; Boutu, W. ; Merdji, H. ; Gonzalez, A.I. ; Gauthier, D. ; Zangrando, M.</creator><creatorcontrib>Raimondi, L. ; Svetina, C. ; Mahne, N. ; Cocco, D. ; Abrami, A. ; De Marco, M. ; Fava, C. ; Gerusina, S. ; Gobessi, R. ; Capotondi, F. ; Pedersoli, E. ; Kiskinova, M. ; De Ninno, G. ; Zeitoun, P. ; Dovillaire, G. ; Lambert, G. ; Boutu, W. ; Merdji, H. ; Gonzalez, A.I. ; Gauthier, D. ; Zangrando, M.</creatorcontrib><description>FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100fs) pulses with ultrahigh peak brightness and wavelengths from 100nm to 4nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2012.11.039</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerator Physics ; Free electron laser ; Fresnel diffraction ; K–B mirrors ; Optics ; Physics ; Plasma Physics ; Wavefront propagation</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2013-05, Vol.710, p.131-138</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6833924a83b22a6702dd0d6a1f65be5b0b418d6419c02c0e902a74e0a03fb6dd3</citedby><cites>FETCH-LOGICAL-c334t-6833924a83b22a6702dd0d6a1f65be5b0b418d6419c02c0e902a74e0a03fb6dd3</cites><orcidid>0000-0003-0572-6735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01163759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Raimondi, L.</creatorcontrib><creatorcontrib>Svetina, C.</creatorcontrib><creatorcontrib>Mahne, N.</creatorcontrib><creatorcontrib>Cocco, D.</creatorcontrib><creatorcontrib>Abrami, A.</creatorcontrib><creatorcontrib>De Marco, M.</creatorcontrib><creatorcontrib>Fava, C.</creatorcontrib><creatorcontrib>Gerusina, S.</creatorcontrib><creatorcontrib>Gobessi, R.</creatorcontrib><creatorcontrib>Capotondi, F.</creatorcontrib><creatorcontrib>Pedersoli, E.</creatorcontrib><creatorcontrib>Kiskinova, M.</creatorcontrib><creatorcontrib>De Ninno, G.</creatorcontrib><creatorcontrib>Zeitoun, P.</creatorcontrib><creatorcontrib>Dovillaire, G.</creatorcontrib><creatorcontrib>Lambert, G.</creatorcontrib><creatorcontrib>Boutu, W.</creatorcontrib><creatorcontrib>Merdji, H.</creatorcontrib><creatorcontrib>Gonzalez, A.I.</creatorcontrib><creatorcontrib>Gauthier, D.</creatorcontrib><creatorcontrib>Zangrando, M.</creatorcontrib><title>Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100fs) pulses with ultrahigh peak brightness and wavelengths from 100nm to 4nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.</description><subject>Accelerator Physics</subject><subject>Free electron laser</subject><subject>Fresnel diffraction</subject><subject>K–B mirrors</subject><subject>Optics</subject><subject>Physics</subject><subject>Plasma Physics</subject><subject>Wavefront propagation</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOGzEQhq2qSE2hL9CTrz3sMrY33t2qh9IoQERQpVLE0fLas42jJF6tTVA4ceANeEOeBK9COTKX0T_6_xnNR8hXBjkDJo-X-catdc6B8ZyxHET9gYxYVfKsHpfyIxklU5XVAPwT-RzCElLVZTUij5fO9L715ja4zT_qWxoXSE-nfy5nP6crjLHXSc1pg3pN71xcUE0vnh-eflFtotsi9V10JtCwCxHX3-lV5yMN7h5p16N1yeM3gTY7qrtu5Ywe9P8rN7OrKTXe4hE5aPUq4JfXfkiuT6d_J-fZ_PfZbHIyz4wQRcxkJUTNC12JhnMtS-DWgpWatXLc4LiBpmCVlQWrDXADWAPXZYGgQbSNtFYckm_7vQu9Ul2fiPU75bVT5ydzNcyAMSnKcb1lycv33oQnhB7btwADNTBXSzUwVwNzxZhKzFPoxz6E6Yutw14F43BjEokeTVTWu_fiL0-OirE</recordid><startdate>20130511</startdate><enddate>20130511</enddate><creator>Raimondi, L.</creator><creator>Svetina, C.</creator><creator>Mahne, N.</creator><creator>Cocco, D.</creator><creator>Abrami, A.</creator><creator>De Marco, M.</creator><creator>Fava, C.</creator><creator>Gerusina, S.</creator><creator>Gobessi, R.</creator><creator>Capotondi, F.</creator><creator>Pedersoli, E.</creator><creator>Kiskinova, M.</creator><creator>De Ninno, G.</creator><creator>Zeitoun, P.</creator><creator>Dovillaire, G.</creator><creator>Lambert, G.</creator><creator>Boutu, W.</creator><creator>Merdji, H.</creator><creator>Gonzalez, A.I.</creator><creator>Gauthier, D.</creator><creator>Zangrando, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0572-6735</orcidid></search><sort><creationdate>20130511</creationdate><title>Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code</title><author>Raimondi, L. ; Svetina, C. ; Mahne, N. ; Cocco, D. ; Abrami, A. ; De Marco, M. ; Fava, C. ; Gerusina, S. ; Gobessi, R. ; Capotondi, F. ; Pedersoli, E. ; Kiskinova, M. ; De Ninno, G. ; Zeitoun, P. ; Dovillaire, G. ; Lambert, G. ; Boutu, W. ; Merdji, H. ; Gonzalez, A.I. ; Gauthier, D. ; Zangrando, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6833924a83b22a6702dd0d6a1f65be5b0b418d6419c02c0e902a74e0a03fb6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accelerator Physics</topic><topic>Free electron laser</topic><topic>Fresnel diffraction</topic><topic>K–B mirrors</topic><topic>Optics</topic><topic>Physics</topic><topic>Plasma Physics</topic><topic>Wavefront propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raimondi, L.</creatorcontrib><creatorcontrib>Svetina, C.</creatorcontrib><creatorcontrib>Mahne, N.</creatorcontrib><creatorcontrib>Cocco, D.</creatorcontrib><creatorcontrib>Abrami, A.</creatorcontrib><creatorcontrib>De Marco, M.</creatorcontrib><creatorcontrib>Fava, C.</creatorcontrib><creatorcontrib>Gerusina, S.</creatorcontrib><creatorcontrib>Gobessi, R.</creatorcontrib><creatorcontrib>Capotondi, F.</creatorcontrib><creatorcontrib>Pedersoli, E.</creatorcontrib><creatorcontrib>Kiskinova, M.</creatorcontrib><creatorcontrib>De Ninno, G.</creatorcontrib><creatorcontrib>Zeitoun, P.</creatorcontrib><creatorcontrib>Dovillaire, G.</creatorcontrib><creatorcontrib>Lambert, G.</creatorcontrib><creatorcontrib>Boutu, W.</creatorcontrib><creatorcontrib>Merdji, H.</creatorcontrib><creatorcontrib>Gonzalez, A.I.</creatorcontrib><creatorcontrib>Gauthier, D.</creatorcontrib><creatorcontrib>Zangrando, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raimondi, L.</au><au>Svetina, C.</au><au>Mahne, N.</au><au>Cocco, D.</au><au>Abrami, A.</au><au>De Marco, M.</au><au>Fava, C.</au><au>Gerusina, S.</au><au>Gobessi, R.</au><au>Capotondi, F.</au><au>Pedersoli, E.</au><au>Kiskinova, M.</au><au>De Ninno, G.</au><au>Zeitoun, P.</au><au>Dovillaire, G.</au><au>Lambert, G.</au><au>Boutu, W.</au><au>Merdji, H.</au><au>Gonzalez, A.I.</au><au>Gauthier, D.</au><au>Zangrando, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2013-05-11</date><risdate>2013</risdate><volume>710</volume><spage>131</spage><epage>138</epage><pages>131-138</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100fs) pulses with ultrahigh peak brightness and wavelengths from 100nm to 4nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2012.11.039</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0572-6735</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2013-05, Vol.710, p.131-138
issn 0168-9002
1872-9576
language eng
recordid cdi_hal_primary_oai_HAL_hal_01163759v1
source ScienceDirect Freedom Collection
subjects Accelerator Physics
Free electron laser
Fresnel diffraction
K–B mirrors
Optics
Physics
Plasma Physics
Wavefront propagation
title Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfocusing%20of%20the%20FERMI@Elettra%20FEL%20beam%20with%20a%20K%E2%80%93B%20active%20optics%20system:%20Spot%20size%20predictions%20by%20application%20of%20the%20WISE%20code&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Raimondi,%20L.&rft.date=2013-05-11&rft.volume=710&rft.spage=131&rft.epage=138&rft.pages=131-138&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2012.11.039&rft_dat=%3Celsevier_hal_p%3ES0168900212013769%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-6833924a83b22a6702dd0d6a1f65be5b0b418d6419c02c0e902a74e0a03fb6dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true