Loading…

A Quantum Monte Carlo Study of the Reactions of CH with Acrolein

To assist understanding of combustion processes, we have investigated reactions of methylidyne (CH) with acrolein (CH2CHCHO) using the quantum Monte Carlo (QMC) and other computational methods. We present a theoretical study of the major reactions reported in a recent experiment on the subject syste...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2015-05, Vol.119 (18), p.4214-4223
Main Authors: Pakhira, Srimanta, Lengeling, Benjamin S, Olatunji-Ojo, Olayinka, Caffarel, Michel, Frenklach, Michael, Lester, William A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To assist understanding of combustion processes, we have investigated reactions of methylidyne (CH) with acrolein (CH2CHCHO) using the quantum Monte Carlo (QMC) and other computational methods. We present a theoretical study of the major reactions reported in a recent experiment on the subject system. Both DFT and MP2 computations are carried out, and the former approach is used to form the independent-particle part of the QMC trial wave function used in the diffusion Monte Carlo (DMC) variant of the QMC method. In agreement with experiment, we find that the dominant product channel leads to formation of C4H4O systems + H with leading products of furan + H and 1,3-butadienal + H. Equilibrium geometries, atomization energies, reaction barriers, transition states, and heats of reaction are computed using the DFT, MP2, and DMC approaches and compared to experiment. We find that DMC results are in close agreement with experiment. The kinetics of the subject reactions are determined by solving master equations with the MultiWell software suite.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.5b00919