Loading…

Breakup length of AC electrified jets in a microfluidic flow-focusing junction

Electroactuation of liquid–liquid interfaces offers promising methods to actively modulate droplet formation in droplet-based microfluidic systems. Here, flow-focusing junctions are coupled to electrodes to control droplet production in the well-known jetting regime. In this regime, a convective ins...

Full description

Saved in:
Bibliographic Details
Published in:Microfluidics and nanofluidics 2015-10, Vol.19 (4), p.787-794
Main Authors: Castro-Hernández, Elena, García-Sánchez, Pablo, Tan, Say Hwa, Gañán-Calvo, Alfonso M., Baret, Jean-Christophe, Ramos, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-a87c41b79f6a8b5f42790189d4ce40ac28056cff409f81a8bc2777df99efa1d03
cites cdi_FETCH-LOGICAL-c463t-a87c41b79f6a8b5f42790189d4ce40ac28056cff409f81a8bc2777df99efa1d03
container_end_page 794
container_issue 4
container_start_page 787
container_title Microfluidics and nanofluidics
container_volume 19
creator Castro-Hernández, Elena
García-Sánchez, Pablo
Tan, Say Hwa
Gañán-Calvo, Alfonso M.
Baret, Jean-Christophe
Ramos, Antonio
description Electroactuation of liquid–liquid interfaces offers promising methods to actively modulate droplet formation in droplet-based microfluidic systems. Here, flow-focusing junctions are coupled to electrodes to control droplet production in the well-known jetting regime. In this regime, a convective instability develops leading to droplet formation at the end of a thin and uniform, long liquid finger. We show that in AC electric fields, the jet length is a function of both the magnitude of the applied voltage and the electrical parameters such as the frequency of the AC field and the conductivity of the dispersed phase. We explain that dependency using a simple transmission line model along the liquid jet. An optimum frequency to maximize the liquid ligament length is experimentally observed. Such length simply cannot be obtained by other means under the same operating conditions, in the absence of the AC signal. At low frequency, we reach a transition from a well-behaved, uniform jet brought about near the optimum frequency to highly unstable liquid structures in which axisymmetry is lost rather abruptly.
doi_str_mv 10.1007/s10404-015-1603-3
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01178890v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3821698361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-a87c41b79f6a8b5f42790189d4ce40ac28056cff409f81a8bc2777df99efa1d03</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhiMEEqXwAGyWmBgMd4kTx2OpgCJVsMBsuY7dOqRxsRMQb0-qoIqFySfr-z_d_UlyiXCDAPw2IjBgFDCnWEBGs6NkggVmlAkBx4e5TE-TsxhrAMZThEnyfBeMeu93pDHtutsQb8lsTkxjdBecdaYitekicS1RZOt08LbpXeU0sY3_otbrPrp2Teq-1Z3z7XlyYlUTzcXvO03eHu5f5wu6fHl8ms-WVLMi66gquWa44sIWqlzllqVcAJaiYtowUDotIS-0tQyELXFAdMo5r6wQxiqsIJsm16N3oxq5C26rwrf0ysnFbCn3f4DIy1LAJw7s1cjugv_oTexk7fvQDutJ5MgzIRCLgcKRGm6MMRh70CLIfcVyrHgw53JfscyGTDpm4sC2axP-mP8N_QAnHH0K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717399116</pqid></control><display><type>article</type><title>Breakup length of AC electrified jets in a microfluidic flow-focusing junction</title><source>Springer Link</source><creator>Castro-Hernández, Elena ; García-Sánchez, Pablo ; Tan, Say Hwa ; Gañán-Calvo, Alfonso M. ; Baret, Jean-Christophe ; Ramos, Antonio</creator><creatorcontrib>Castro-Hernández, Elena ; García-Sánchez, Pablo ; Tan, Say Hwa ; Gañán-Calvo, Alfonso M. ; Baret, Jean-Christophe ; Ramos, Antonio</creatorcontrib><description>Electroactuation of liquid–liquid interfaces offers promising methods to actively modulate droplet formation in droplet-based microfluidic systems. Here, flow-focusing junctions are coupled to electrodes to control droplet production in the well-known jetting regime. In this regime, a convective instability develops leading to droplet formation at the end of a thin and uniform, long liquid finger. We show that in AC electric fields, the jet length is a function of both the magnitude of the applied voltage and the electrical parameters such as the frequency of the AC field and the conductivity of the dispersed phase. We explain that dependency using a simple transmission line model along the liquid jet. An optimum frequency to maximize the liquid ligament length is experimentally observed. Such length simply cannot be obtained by other means under the same operating conditions, in the absence of the AC signal. At low frequency, we reach a transition from a well-behaved, uniform jet brought about near the optimum frequency to highly unstable liquid structures in which axisymmetry is lost rather abruptly.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-015-1603-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biochemistry, Molecular Biology ; Biomedical Engineering and Bioengineering ; Biotechnology ; Engineering ; Engineering Fluid Dynamics ; Life Sciences ; Nanotechnology and Microengineering ; Research Paper ; Transmission lines</subject><ispartof>Microfluidics and nanofluidics, 2015-10, Vol.19 (4), p.787-794</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-a87c41b79f6a8b5f42790189d4ce40ac28056cff409f81a8bc2777df99efa1d03</citedby><cites>FETCH-LOGICAL-c463t-a87c41b79f6a8b5f42790189d4ce40ac28056cff409f81a8bc2777df99efa1d03</cites><orcidid>0000-0003-2048-8317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01178890$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro-Hernández, Elena</creatorcontrib><creatorcontrib>García-Sánchez, Pablo</creatorcontrib><creatorcontrib>Tan, Say Hwa</creatorcontrib><creatorcontrib>Gañán-Calvo, Alfonso M.</creatorcontrib><creatorcontrib>Baret, Jean-Christophe</creatorcontrib><creatorcontrib>Ramos, Antonio</creatorcontrib><title>Breakup length of AC electrified jets in a microfluidic flow-focusing junction</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Electroactuation of liquid–liquid interfaces offers promising methods to actively modulate droplet formation in droplet-based microfluidic systems. Here, flow-focusing junctions are coupled to electrodes to control droplet production in the well-known jetting regime. In this regime, a convective instability develops leading to droplet formation at the end of a thin and uniform, long liquid finger. We show that in AC electric fields, the jet length is a function of both the magnitude of the applied voltage and the electrical parameters such as the frequency of the AC field and the conductivity of the dispersed phase. We explain that dependency using a simple transmission line model along the liquid jet. An optimum frequency to maximize the liquid ligament length is experimentally observed. Such length simply cannot be obtained by other means under the same operating conditions, in the absence of the AC signal. At low frequency, we reach a transition from a well-behaved, uniform jet brought about near the optimum frequency to highly unstable liquid structures in which axisymmetry is lost rather abruptly.</description><subject>Analytical Chemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biotechnology</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Life Sciences</subject><subject>Nanotechnology and Microengineering</subject><subject>Research Paper</subject><subject>Transmission lines</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhiMEEqXwAGyWmBgMd4kTx2OpgCJVsMBsuY7dOqRxsRMQb0-qoIqFySfr-z_d_UlyiXCDAPw2IjBgFDCnWEBGs6NkggVmlAkBx4e5TE-TsxhrAMZThEnyfBeMeu93pDHtutsQb8lsTkxjdBecdaYitekicS1RZOt08LbpXeU0sY3_otbrPrp2Teq-1Z3z7XlyYlUTzcXvO03eHu5f5wu6fHl8ms-WVLMi66gquWa44sIWqlzllqVcAJaiYtowUDotIS-0tQyELXFAdMo5r6wQxiqsIJsm16N3oxq5C26rwrf0ysnFbCn3f4DIy1LAJw7s1cjugv_oTexk7fvQDutJ5MgzIRCLgcKRGm6MMRh70CLIfcVyrHgw53JfscyGTDpm4sC2axP-mP8N_QAnHH0K</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Castro-Hernández, Elena</creator><creator>García-Sánchez, Pablo</creator><creator>Tan, Say Hwa</creator><creator>Gañán-Calvo, Alfonso M.</creator><creator>Baret, Jean-Christophe</creator><creator>Ramos, Antonio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2048-8317</orcidid></search><sort><creationdate>20151001</creationdate><title>Breakup length of AC electrified jets in a microfluidic flow-focusing junction</title><author>Castro-Hernández, Elena ; García-Sánchez, Pablo ; Tan, Say Hwa ; Gañán-Calvo, Alfonso M. ; Baret, Jean-Christophe ; Ramos, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-a87c41b79f6a8b5f42790189d4ce40ac28056cff409f81a8bc2777df99efa1d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analytical Chemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biotechnology</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Life Sciences</topic><topic>Nanotechnology and Microengineering</topic><topic>Research Paper</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro-Hernández, Elena</creatorcontrib><creatorcontrib>García-Sánchez, Pablo</creatorcontrib><creatorcontrib>Tan, Say Hwa</creatorcontrib><creatorcontrib>Gañán-Calvo, Alfonso M.</creatorcontrib><creatorcontrib>Baret, Jean-Christophe</creatorcontrib><creatorcontrib>Ramos, Antonio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro-Hernández, Elena</au><au>García-Sánchez, Pablo</au><au>Tan, Say Hwa</au><au>Gañán-Calvo, Alfonso M.</au><au>Baret, Jean-Christophe</au><au>Ramos, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakup length of AC electrified jets in a microfluidic flow-focusing junction</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>19</volume><issue>4</issue><spage>787</spage><epage>794</epage><pages>787-794</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Electroactuation of liquid–liquid interfaces offers promising methods to actively modulate droplet formation in droplet-based microfluidic systems. Here, flow-focusing junctions are coupled to electrodes to control droplet production in the well-known jetting regime. In this regime, a convective instability develops leading to droplet formation at the end of a thin and uniform, long liquid finger. We show that in AC electric fields, the jet length is a function of both the magnitude of the applied voltage and the electrical parameters such as the frequency of the AC field and the conductivity of the dispersed phase. We explain that dependency using a simple transmission line model along the liquid jet. An optimum frequency to maximize the liquid ligament length is experimentally observed. Such length simply cannot be obtained by other means under the same operating conditions, in the absence of the AC signal. At low frequency, we reach a transition from a well-behaved, uniform jet brought about near the optimum frequency to highly unstable liquid structures in which axisymmetry is lost rather abruptly.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-015-1603-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2048-8317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2015-10, Vol.19 (4), p.787-794
issn 1613-4982
1613-4990
language eng
recordid cdi_hal_primary_oai_HAL_hal_01178890v1
source Springer Link
subjects Analytical Chemistry
Biochemistry, Molecular Biology
Biomedical Engineering and Bioengineering
Biotechnology
Engineering
Engineering Fluid Dynamics
Life Sciences
Nanotechnology and Microengineering
Research Paper
Transmission lines
title Breakup length of AC electrified jets in a microfluidic flow-focusing junction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakup%20length%20of%20AC%20electrified%20jets%20in%20a%20microfluidic%20flow-focusing%20junction&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Castro-Hern%C3%A1ndez,%20Elena&rft.date=2015-10-01&rft.volume=19&rft.issue=4&rft.spage=787&rft.epage=794&rft.pages=787-794&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-015-1603-3&rft_dat=%3Cproquest_hal_p%3E3821698361%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-a87c41b79f6a8b5f42790189d4ce40ac28056cff409f81a8bc2777df99efa1d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1717399116&rft_id=info:pmid/&rfr_iscdi=true