Loading…
Plant Sterol Diversity in Pollen from Angiosperms
Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19...
Saved in:
Published in: | Lipids 2015-08, Vol.50 (8), p.749-760 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503 |
---|---|
cites | cdi_FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503 |
container_end_page | 760 |
container_issue | 8 |
container_start_page | 749 |
container_title | Lipids |
container_volume | 50 |
creator | Villette, Claire Berna, Anne Compagnon, Vincent Schaller, Hubert |
description | Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ⁵-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube. |
doi_str_mv | 10.1007/s11745-015-4008-x |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01184184v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701891011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503</originalsourceid><addsrcrecordid>eNqFkl9LHDEUxUNR6mr7AfpSB3zRh2nvzebv46JtFRZcsD6HcSbZRmYma7Jr3W9vhlERHxQCIeF3Ts49hJBvCD8QQP5MiJLxEpCXDECVD5_IBDlXpZ6C3CETAMpKRgH3yH5Kt_mITPPPZI9yRUGBnBBctFW_Lq7WNoa2OPP3Nia_3ha-LxahbW1fuBi6YtYvfUgrG7v0hey6qk3269N-QK5___p7el7OL_9cnM7mZc0Z0yVqx2UtWcNoowQ6DrzWwPiNbgSlGoRDqxgDxUE53TAhmmrqGiGERmQcpgfkZPT9V7VmFX1Xxa0JlTfns7kZ7gBRsbzuMbPHI7uK4W5j09p0PtW2zbPZsEkGJaDSmBUZPXqD3oZN7PMkAwWaCoHD4zhSdQwpReteEiCYoXszdp9DcDN0bx6y5vuT8-ams82L4rnsDMgR-O9bu_3Y0cwvFmcgmc5KOipTFvVLG1-FfifP4ShyVTDVMvpkrq_yZxAAgKCEnD4CVcikMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700926610</pqid></control><display><type>article</type><title>Plant Sterol Diversity in Pollen from Angiosperms</title><source>Springer LINK Contemporary (1997 - Present)</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Villette, Claire ; Berna, Anne ; Compagnon, Vincent ; Schaller, Hubert</creator><creatorcontrib>Villette, Claire ; Berna, Anne ; Compagnon, Vincent ; Schaller, Hubert</creatorcontrib><description>Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ⁵-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.</description><identifier>ISSN: 0024-4201</identifier><identifier>EISSN: 1558-9307</identifier><identifier>DOI: 10.1007/s11745-015-4008-x</identifier><identifier>PMID: 25820807</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>9β,19‐Cyclopropyl sterols ; Angiosperm ; Biochemistry, Molecular Biology ; biogenesis ; Biomedical and Life Sciences ; Cellular Biology ; Esters ; flowering ; G.J. Schroepfer ; gametophytes ; Gas Chromatography-Mass Spectrometry ; Germination ; Jr. Memorial Sterol Symposium ; Life Sciences ; Lipidology ; Magnoliopsida - chemistry ; Magnoliopsida - growth & development ; Magnoliopsida - metabolism ; males ; Medical Biochemistry ; Medicinal Chemistry ; mevalonic acid ; Microbial Genetics and Genomics ; Molecular biology ; Neurochemistry ; Nicotiana tabacum ; Nutrition ; Original Article ; phytosterols ; Plant ; Pollen ; Pollen - chemistry ; Pollen - growth & development ; Pollen - metabolism ; Pollen tube ; pollen tubes ; radiolabeling ; Stanols ; Sterol metabolism ; Sterols - analysis ; Sterols - metabolism ; Δ5‐Sterols ; Δ7‐Sterols</subject><ispartof>Lipids, 2015-08, Vol.50 (8), p.749-760</ispartof><rights>AOCS 2015</rights><rights>2015 American Oil Chemists' Society (AOCS)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503</citedby><cites>FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11745-015-4008-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11745-015-4008-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,1639,27905,27906,41399,42468,51299</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25820807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01184184$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Villette, Claire</creatorcontrib><creatorcontrib>Berna, Anne</creatorcontrib><creatorcontrib>Compagnon, Vincent</creatorcontrib><creatorcontrib>Schaller, Hubert</creatorcontrib><title>Plant Sterol Diversity in Pollen from Angiosperms</title><title>Lipids</title><addtitle>Lipids</addtitle><addtitle>Lipids</addtitle><description>Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ⁵-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.</description><subject>9β,19‐Cyclopropyl sterols</subject><subject>Angiosperm</subject><subject>Biochemistry, Molecular Biology</subject><subject>biogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Cellular Biology</subject><subject>Esters</subject><subject>flowering</subject><subject>G.J. Schroepfer</subject><subject>gametophytes</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Germination</subject><subject>Jr. Memorial Sterol Symposium</subject><subject>Life Sciences</subject><subject>Lipidology</subject><subject>Magnoliopsida - chemistry</subject><subject>Magnoliopsida - growth & development</subject><subject>Magnoliopsida - metabolism</subject><subject>males</subject><subject>Medical Biochemistry</subject><subject>Medicinal Chemistry</subject><subject>mevalonic acid</subject><subject>Microbial Genetics and Genomics</subject><subject>Molecular biology</subject><subject>Neurochemistry</subject><subject>Nicotiana tabacum</subject><subject>Nutrition</subject><subject>Original Article</subject><subject>phytosterols</subject><subject>Plant</subject><subject>Pollen</subject><subject>Pollen - chemistry</subject><subject>Pollen - growth & development</subject><subject>Pollen - metabolism</subject><subject>Pollen tube</subject><subject>pollen tubes</subject><subject>radiolabeling</subject><subject>Stanols</subject><subject>Sterol metabolism</subject><subject>Sterols - analysis</subject><subject>Sterols - metabolism</subject><subject>Δ5‐Sterols</subject><subject>Δ7‐Sterols</subject><issn>0024-4201</issn><issn>1558-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkl9LHDEUxUNR6mr7AfpSB3zRh2nvzebv46JtFRZcsD6HcSbZRmYma7Jr3W9vhlERHxQCIeF3Ts49hJBvCD8QQP5MiJLxEpCXDECVD5_IBDlXpZ6C3CETAMpKRgH3yH5Kt_mITPPPZI9yRUGBnBBctFW_Lq7WNoa2OPP3Nia_3ha-LxahbW1fuBi6YtYvfUgrG7v0hey6qk3269N-QK5___p7el7OL_9cnM7mZc0Z0yVqx2UtWcNoowQ6DrzWwPiNbgSlGoRDqxgDxUE53TAhmmrqGiGERmQcpgfkZPT9V7VmFX1Xxa0JlTfns7kZ7gBRsbzuMbPHI7uK4W5j09p0PtW2zbPZsEkGJaDSmBUZPXqD3oZN7PMkAwWaCoHD4zhSdQwpReteEiCYoXszdp9DcDN0bx6y5vuT8-ams82L4rnsDMgR-O9bu_3Y0cwvFmcgmc5KOipTFvVLG1-FfifP4ShyVTDVMvpkrq_yZxAAgKCEnD4CVcikMQ</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Villette, Claire</creator><creator>Berna, Anne</creator><creator>Compagnon, Vincent</creator><creator>Schaller, Hubert</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>201508</creationdate><title>Plant Sterol Diversity in Pollen from Angiosperms</title><author>Villette, Claire ; Berna, Anne ; Compagnon, Vincent ; Schaller, Hubert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>9β,19‐Cyclopropyl sterols</topic><topic>Angiosperm</topic><topic>Biochemistry, Molecular Biology</topic><topic>biogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Cellular Biology</topic><topic>Esters</topic><topic>flowering</topic><topic>G.J. Schroepfer</topic><topic>gametophytes</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Germination</topic><topic>Jr. Memorial Sterol Symposium</topic><topic>Life Sciences</topic><topic>Lipidology</topic><topic>Magnoliopsida - chemistry</topic><topic>Magnoliopsida - growth & development</topic><topic>Magnoliopsida - metabolism</topic><topic>males</topic><topic>Medical Biochemistry</topic><topic>Medicinal Chemistry</topic><topic>mevalonic acid</topic><topic>Microbial Genetics and Genomics</topic><topic>Molecular biology</topic><topic>Neurochemistry</topic><topic>Nicotiana tabacum</topic><topic>Nutrition</topic><topic>Original Article</topic><topic>phytosterols</topic><topic>Plant</topic><topic>Pollen</topic><topic>Pollen - chemistry</topic><topic>Pollen - growth & development</topic><topic>Pollen - metabolism</topic><topic>Pollen tube</topic><topic>pollen tubes</topic><topic>radiolabeling</topic><topic>Stanols</topic><topic>Sterol metabolism</topic><topic>Sterols - analysis</topic><topic>Sterols - metabolism</topic><topic>Δ5‐Sterols</topic><topic>Δ7‐Sterols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villette, Claire</creatorcontrib><creatorcontrib>Berna, Anne</creatorcontrib><creatorcontrib>Compagnon, Vincent</creatorcontrib><creatorcontrib>Schaller, Hubert</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villette, Claire</au><au>Berna, Anne</au><au>Compagnon, Vincent</au><au>Schaller, Hubert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant Sterol Diversity in Pollen from Angiosperms</atitle><jtitle>Lipids</jtitle><stitle>Lipids</stitle><addtitle>Lipids</addtitle><date>2015-08</date><risdate>2015</risdate><volume>50</volume><issue>8</issue><spage>749</spage><epage>760</epage><pages>749-760</pages><issn>0024-4201</issn><eissn>1558-9307</eissn><abstract>Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ⁵-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25820807</pmid><doi>10.1007/s11745-015-4008-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-4201 |
ispartof | Lipids, 2015-08, Vol.50 (8), p.749-760 |
issn | 0024-4201 1558-9307 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01184184v1 |
source | Springer LINK Contemporary (1997 - Present); Wiley-Blackwell Read & Publish Collection |
subjects | 9β,19‐Cyclopropyl sterols Angiosperm Biochemistry, Molecular Biology biogenesis Biomedical and Life Sciences Cellular Biology Esters flowering G.J. Schroepfer gametophytes Gas Chromatography-Mass Spectrometry Germination Jr. Memorial Sterol Symposium Life Sciences Lipidology Magnoliopsida - chemistry Magnoliopsida - growth & development Magnoliopsida - metabolism males Medical Biochemistry Medicinal Chemistry mevalonic acid Microbial Genetics and Genomics Molecular biology Neurochemistry Nicotiana tabacum Nutrition Original Article phytosterols Plant Pollen Pollen - chemistry Pollen - growth & development Pollen - metabolism Pollen tube pollen tubes radiolabeling Stanols Sterol metabolism Sterols - analysis Sterols - metabolism Δ5‐Sterols Δ7‐Sterols |
title | Plant Sterol Diversity in Pollen from Angiosperms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20Sterol%20Diversity%20in%20Pollen%20from%20Angiosperms&rft.jtitle=Lipids&rft.au=Villette,%20Claire&rft.date=2015-08&rft.volume=50&rft.issue=8&rft.spage=749&rft.epage=760&rft.pages=749-760&rft.issn=0024-4201&rft.eissn=1558-9307&rft_id=info:doi/10.1007/s11745-015-4008-x&rft_dat=%3Cproquest_hal_p%3E1701891011%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1700926610&rft_id=info:pmid/25820807&rfr_iscdi=true |