Loading…

Plant Sterol Diversity in Pollen from Angiosperms

Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19...

Full description

Saved in:
Bibliographic Details
Published in:Lipids 2015-08, Vol.50 (8), p.749-760
Main Authors: Villette, Claire, Berna, Anne, Compagnon, Vincent, Schaller, Hubert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503
cites cdi_FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503
container_end_page 760
container_issue 8
container_start_page 749
container_title Lipids
container_volume 50
creator Villette, Claire
Berna, Anne
Compagnon, Vincent
Schaller, Hubert
description Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ⁵-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.
doi_str_mv 10.1007/s11745-015-4008-x
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01184184v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701891011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503</originalsourceid><addsrcrecordid>eNqFkl9LHDEUxUNR6mr7AfpSB3zRh2nvzebv46JtFRZcsD6HcSbZRmYma7Jr3W9vhlERHxQCIeF3Ts49hJBvCD8QQP5MiJLxEpCXDECVD5_IBDlXpZ6C3CETAMpKRgH3yH5Kt_mITPPPZI9yRUGBnBBctFW_Lq7WNoa2OPP3Nia_3ha-LxahbW1fuBi6YtYvfUgrG7v0hey6qk3269N-QK5___p7el7OL_9cnM7mZc0Z0yVqx2UtWcNoowQ6DrzWwPiNbgSlGoRDqxgDxUE53TAhmmrqGiGERmQcpgfkZPT9V7VmFX1Xxa0JlTfns7kZ7gBRsbzuMbPHI7uK4W5j09p0PtW2zbPZsEkGJaDSmBUZPXqD3oZN7PMkAwWaCoHD4zhSdQwpReteEiCYoXszdp9DcDN0bx6y5vuT8-ams82L4rnsDMgR-O9bu_3Y0cwvFmcgmc5KOipTFvVLG1-FfifP4ShyVTDVMvpkrq_yZxAAgKCEnD4CVcikMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700926610</pqid></control><display><type>article</type><title>Plant Sterol Diversity in Pollen from Angiosperms</title><source>Springer LINK Contemporary (1997 - Present)</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Villette, Claire ; Berna, Anne ; Compagnon, Vincent ; Schaller, Hubert</creator><creatorcontrib>Villette, Claire ; Berna, Anne ; Compagnon, Vincent ; Schaller, Hubert</creatorcontrib><description>Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ⁵-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.</description><identifier>ISSN: 0024-4201</identifier><identifier>EISSN: 1558-9307</identifier><identifier>DOI: 10.1007/s11745-015-4008-x</identifier><identifier>PMID: 25820807</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>9β,19‐Cyclopropyl sterols ; Angiosperm ; Biochemistry, Molecular Biology ; biogenesis ; Biomedical and Life Sciences ; Cellular Biology ; Esters ; flowering ; G.J. Schroepfer ; gametophytes ; Gas Chromatography-Mass Spectrometry ; Germination ; Jr. Memorial Sterol Symposium ; Life Sciences ; Lipidology ; Magnoliopsida - chemistry ; Magnoliopsida - growth &amp; development ; Magnoliopsida - metabolism ; males ; Medical Biochemistry ; Medicinal Chemistry ; mevalonic acid ; Microbial Genetics and Genomics ; Molecular biology ; Neurochemistry ; Nicotiana tabacum ; Nutrition ; Original Article ; phytosterols ; Plant ; Pollen ; Pollen - chemistry ; Pollen - growth &amp; development ; Pollen - metabolism ; Pollen tube ; pollen tubes ; radiolabeling ; Stanols ; Sterol metabolism ; Sterols - analysis ; Sterols - metabolism ; Δ5‐Sterols ; Δ7‐Sterols</subject><ispartof>Lipids, 2015-08, Vol.50 (8), p.749-760</ispartof><rights>AOCS 2015</rights><rights>2015 American Oil Chemists' Society (AOCS)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503</citedby><cites>FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11745-015-4008-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11745-015-4008-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,1639,27905,27906,41399,42468,51299</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25820807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01184184$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Villette, Claire</creatorcontrib><creatorcontrib>Berna, Anne</creatorcontrib><creatorcontrib>Compagnon, Vincent</creatorcontrib><creatorcontrib>Schaller, Hubert</creatorcontrib><title>Plant Sterol Diversity in Pollen from Angiosperms</title><title>Lipids</title><addtitle>Lipids</addtitle><addtitle>Lipids</addtitle><description>Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ⁵-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.</description><subject>9β,19‐Cyclopropyl sterols</subject><subject>Angiosperm</subject><subject>Biochemistry, Molecular Biology</subject><subject>biogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Cellular Biology</subject><subject>Esters</subject><subject>flowering</subject><subject>G.J. Schroepfer</subject><subject>gametophytes</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Germination</subject><subject>Jr. Memorial Sterol Symposium</subject><subject>Life Sciences</subject><subject>Lipidology</subject><subject>Magnoliopsida - chemistry</subject><subject>Magnoliopsida - growth &amp; development</subject><subject>Magnoliopsida - metabolism</subject><subject>males</subject><subject>Medical Biochemistry</subject><subject>Medicinal Chemistry</subject><subject>mevalonic acid</subject><subject>Microbial Genetics and Genomics</subject><subject>Molecular biology</subject><subject>Neurochemistry</subject><subject>Nicotiana tabacum</subject><subject>Nutrition</subject><subject>Original Article</subject><subject>phytosterols</subject><subject>Plant</subject><subject>Pollen</subject><subject>Pollen - chemistry</subject><subject>Pollen - growth &amp; development</subject><subject>Pollen - metabolism</subject><subject>Pollen tube</subject><subject>pollen tubes</subject><subject>radiolabeling</subject><subject>Stanols</subject><subject>Sterol metabolism</subject><subject>Sterols - analysis</subject><subject>Sterols - metabolism</subject><subject>Δ5‐Sterols</subject><subject>Δ7‐Sterols</subject><issn>0024-4201</issn><issn>1558-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkl9LHDEUxUNR6mr7AfpSB3zRh2nvzebv46JtFRZcsD6HcSbZRmYma7Jr3W9vhlERHxQCIeF3Ts49hJBvCD8QQP5MiJLxEpCXDECVD5_IBDlXpZ6C3CETAMpKRgH3yH5Kt_mITPPPZI9yRUGBnBBctFW_Lq7WNoa2OPP3Nia_3ha-LxahbW1fuBi6YtYvfUgrG7v0hey6qk3269N-QK5___p7el7OL_9cnM7mZc0Z0yVqx2UtWcNoowQ6DrzWwPiNbgSlGoRDqxgDxUE53TAhmmrqGiGERmQcpgfkZPT9V7VmFX1Xxa0JlTfns7kZ7gBRsbzuMbPHI7uK4W5j09p0PtW2zbPZsEkGJaDSmBUZPXqD3oZN7PMkAwWaCoHD4zhSdQwpReteEiCYoXszdp9DcDN0bx6y5vuT8-ams82L4rnsDMgR-O9bu_3Y0cwvFmcgmc5KOipTFvVLG1-FfifP4ShyVTDVMvpkrq_yZxAAgKCEnD4CVcikMQ</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Villette, Claire</creator><creator>Berna, Anne</creator><creator>Compagnon, Vincent</creator><creator>Schaller, Hubert</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>201508</creationdate><title>Plant Sterol Diversity in Pollen from Angiosperms</title><author>Villette, Claire ; Berna, Anne ; Compagnon, Vincent ; Schaller, Hubert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>9β,19‐Cyclopropyl sterols</topic><topic>Angiosperm</topic><topic>Biochemistry, Molecular Biology</topic><topic>biogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Cellular Biology</topic><topic>Esters</topic><topic>flowering</topic><topic>G.J. Schroepfer</topic><topic>gametophytes</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Germination</topic><topic>Jr. Memorial Sterol Symposium</topic><topic>Life Sciences</topic><topic>Lipidology</topic><topic>Magnoliopsida - chemistry</topic><topic>Magnoliopsida - growth &amp; development</topic><topic>Magnoliopsida - metabolism</topic><topic>males</topic><topic>Medical Biochemistry</topic><topic>Medicinal Chemistry</topic><topic>mevalonic acid</topic><topic>Microbial Genetics and Genomics</topic><topic>Molecular biology</topic><topic>Neurochemistry</topic><topic>Nicotiana tabacum</topic><topic>Nutrition</topic><topic>Original Article</topic><topic>phytosterols</topic><topic>Plant</topic><topic>Pollen</topic><topic>Pollen - chemistry</topic><topic>Pollen - growth &amp; development</topic><topic>Pollen - metabolism</topic><topic>Pollen tube</topic><topic>pollen tubes</topic><topic>radiolabeling</topic><topic>Stanols</topic><topic>Sterol metabolism</topic><topic>Sterols - analysis</topic><topic>Sterols - metabolism</topic><topic>Δ5‐Sterols</topic><topic>Δ7‐Sterols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villette, Claire</creatorcontrib><creatorcontrib>Berna, Anne</creatorcontrib><creatorcontrib>Compagnon, Vincent</creatorcontrib><creatorcontrib>Schaller, Hubert</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villette, Claire</au><au>Berna, Anne</au><au>Compagnon, Vincent</au><au>Schaller, Hubert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant Sterol Diversity in Pollen from Angiosperms</atitle><jtitle>Lipids</jtitle><stitle>Lipids</stitle><addtitle>Lipids</addtitle><date>2015-08</date><risdate>2015</risdate><volume>50</volume><issue>8</issue><spage>749</spage><epage>760</epage><pages>749-760</pages><issn>0024-4201</issn><eissn>1558-9307</eissn><abstract>Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ⁵-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25820807</pmid><doi>10.1007/s11745-015-4008-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-4201
ispartof Lipids, 2015-08, Vol.50 (8), p.749-760
issn 0024-4201
1558-9307
language eng
recordid cdi_hal_primary_oai_HAL_hal_01184184v1
source Springer LINK Contemporary (1997 - Present); Wiley-Blackwell Read & Publish Collection
subjects 9β,19‐Cyclopropyl sterols
Angiosperm
Biochemistry, Molecular Biology
biogenesis
Biomedical and Life Sciences
Cellular Biology
Esters
flowering
G.J. Schroepfer
gametophytes
Gas Chromatography-Mass Spectrometry
Germination
Jr. Memorial Sterol Symposium
Life Sciences
Lipidology
Magnoliopsida - chemistry
Magnoliopsida - growth & development
Magnoliopsida - metabolism
males
Medical Biochemistry
Medicinal Chemistry
mevalonic acid
Microbial Genetics and Genomics
Molecular biology
Neurochemistry
Nicotiana tabacum
Nutrition
Original Article
phytosterols
Plant
Pollen
Pollen - chemistry
Pollen - growth & development
Pollen - metabolism
Pollen tube
pollen tubes
radiolabeling
Stanols
Sterol metabolism
Sterols - analysis
Sterols - metabolism
Δ5‐Sterols
Δ7‐Sterols
title Plant Sterol Diversity in Pollen from Angiosperms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20Sterol%20Diversity%20in%20Pollen%20from%20Angiosperms&rft.jtitle=Lipids&rft.au=Villette,%20Claire&rft.date=2015-08&rft.volume=50&rft.issue=8&rft.spage=749&rft.epage=760&rft.pages=749-760&rft.issn=0024-4201&rft.eissn=1558-9307&rft_id=info:doi/10.1007/s11745-015-4008-x&rft_dat=%3Cproquest_hal_p%3E1701891011%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5449-19f57c74d42d861f505c9045b9d622906f1e84408508f9d466da3fd6669114503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1700926610&rft_id=info:pmid/25820807&rfr_iscdi=true