Loading…

Dynamic modeling and experimental validation elements of a 30 kW LiBr/H2O single effect absorption chiller for solar application

This paper presents a dynamic modeling of a single-effect absorption chiller working with LiBr–H2O solution used in a solar cooling installation operating without any backup systems (hot or cold). In this case, the absorption machine is powered only by a solar collector field. Given the highly varia...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2015-11, Vol.90 (C), p.980-993
Main Authors: Marc, Olivier, Sinama, Frantz, Praene, Jean-Philippe, Lucas, Franck, Castaing-Lasvignottes, Jean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-5441d8c91bbb0dc9221e858981705ab8b90f31678834174b661f241efc54611a3
cites cdi_FETCH-LOGICAL-c405t-5441d8c91bbb0dc9221e858981705ab8b90f31678834174b661f241efc54611a3
container_end_page 993
container_issue C
container_start_page 980
container_title Applied thermal engineering
container_volume 90
creator Marc, Olivier
Sinama, Frantz
Praene, Jean-Philippe
Lucas, Franck
Castaing-Lasvignottes, Jean
description This paper presents a dynamic modeling of a single-effect absorption chiller working with LiBr–H2O solution used in a solar cooling installation operating without any backup systems (hot or cold). In this case, the absorption machine is powered only by a solar collector field. Given the highly variable nature of solar radiation and the building loads, the range of the three source temperatures of the chiller can vary widely since there is no backup system. These fluctuating source temperatures mean that the chiller does not operate in steady state phase during the day. The dynamic modeling of the absorption chiller is therefore very important to predict its performance, taking into account both the transient and steady state phases. The numerical model presented in this paper is based on the mass and energy balances of each component, equations of state and equations of heat transfers. In the first part, this article presents the dynamic modeling of a LiBr/H2O absorption chiller. Then, experimental validation elements are proposed to validate pressures and temperatures of the chiller. Finally, a method is presented to optimize the thermal COP according to different levels of refrigerating capacities. •A dynamic absorption chiller model has been developed in this paper.•The model is described and an experimental validation is carried out.•The good agreement between the prediction and the experimental data is presented.•Then the model is used to optimize heat source temperatures to produce different levels of refrigerating capacities.
doi_str_mv 10.1016/j.applthermaleng.2015.07.067
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01187728v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431115007644</els_id><sourcerecordid>oai_HAL_hal_01187728v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5441d8c91bbb0dc9221e858981705ab8b90f31678834174b661f241efc54611a3</originalsourceid><addsrcrecordid>eNqNkMFq3DAQhk1podsk76BDLz3Y0diyJUMu202TDSzsJSVHIcujrLZay0hmSY59kz5LnyxyNgR662mGYb6fmS_LvgItgEJzuS_UOLpph-GgHA6PRUmhLigvaMM_ZAsQvMrrhjYfU1_Vbc4qgM_Zlxj3lEIpOFtkv6-fB3Wwmhx8j84Oj0QNPcGnEYM94DApR47K2V5N1g8EHc7DSLwhilT0759fD2Rjv4fLdbklMeEOCRqDeiKqiz6Mr5jeWecwEOMDid6pQOa7rX4NPc8-GeUiXrzVs-znzY_71TrfbG_vVstNrhmtp7xmDHqhW-i6jva6LUtAUYtWAKe16kTXUlNBw4WoGHDWNQ2YkgEaXbMGQFVn2bdT7k45OabvVHiWXlm5Xm7kPKOQhPFSHCHtXp12dfAxBjTvAFA5q5d7-a96OauXlMukPuE3JxzTP0eLQUZtcdDY25DUyN7b_wt6AS32luI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic modeling and experimental validation elements of a 30 kW LiBr/H2O single effect absorption chiller for solar application</title><source>Elsevier</source><creator>Marc, Olivier ; Sinama, Frantz ; Praene, Jean-Philippe ; Lucas, Franck ; Castaing-Lasvignottes, Jean</creator><creatorcontrib>Marc, Olivier ; Sinama, Frantz ; Praene, Jean-Philippe ; Lucas, Franck ; Castaing-Lasvignottes, Jean</creatorcontrib><description>This paper presents a dynamic modeling of a single-effect absorption chiller working with LiBr–H2O solution used in a solar cooling installation operating without any backup systems (hot or cold). In this case, the absorption machine is powered only by a solar collector field. Given the highly variable nature of solar radiation and the building loads, the range of the three source temperatures of the chiller can vary widely since there is no backup system. These fluctuating source temperatures mean that the chiller does not operate in steady state phase during the day. The dynamic modeling of the absorption chiller is therefore very important to predict its performance, taking into account both the transient and steady state phases. The numerical model presented in this paper is based on the mass and energy balances of each component, equations of state and equations of heat transfers. In the first part, this article presents the dynamic modeling of a LiBr/H2O absorption chiller. Then, experimental validation elements are proposed to validate pressures and temperatures of the chiller. Finally, a method is presented to optimize the thermal COP according to different levels of refrigerating capacities. •A dynamic absorption chiller model has been developed in this paper.•The model is described and an experimental validation is carried out.•The good agreement between the prediction and the experimental data is presented.•Then the model is used to optimize heat source temperatures to produce different levels of refrigerating capacities.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2015.07.067</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Absorption chiller ; Dynamic model ; Experimental validation ; Mechanics ; Optimization ; Physics ; Simulation ; Thermics</subject><ispartof>Applied thermal engineering, 2015-11, Vol.90 (C), p.980-993</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-5441d8c91bbb0dc9221e858981705ab8b90f31678834174b661f241efc54611a3</citedby><cites>FETCH-LOGICAL-c405t-5441d8c91bbb0dc9221e858981705ab8b90f31678834174b661f241efc54611a3</cites><orcidid>0000-0002-5041-7045 ; 0000-0003-3825-8878 ; 0000-0001-7706-3534 ; 0000-0002-5125-628X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01187728$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marc, Olivier</creatorcontrib><creatorcontrib>Sinama, Frantz</creatorcontrib><creatorcontrib>Praene, Jean-Philippe</creatorcontrib><creatorcontrib>Lucas, Franck</creatorcontrib><creatorcontrib>Castaing-Lasvignottes, Jean</creatorcontrib><title>Dynamic modeling and experimental validation elements of a 30 kW LiBr/H2O single effect absorption chiller for solar application</title><title>Applied thermal engineering</title><description>This paper presents a dynamic modeling of a single-effect absorption chiller working with LiBr–H2O solution used in a solar cooling installation operating without any backup systems (hot or cold). In this case, the absorption machine is powered only by a solar collector field. Given the highly variable nature of solar radiation and the building loads, the range of the three source temperatures of the chiller can vary widely since there is no backup system. These fluctuating source temperatures mean that the chiller does not operate in steady state phase during the day. The dynamic modeling of the absorption chiller is therefore very important to predict its performance, taking into account both the transient and steady state phases. The numerical model presented in this paper is based on the mass and energy balances of each component, equations of state and equations of heat transfers. In the first part, this article presents the dynamic modeling of a LiBr/H2O absorption chiller. Then, experimental validation elements are proposed to validate pressures and temperatures of the chiller. Finally, a method is presented to optimize the thermal COP according to different levels of refrigerating capacities. •A dynamic absorption chiller model has been developed in this paper.•The model is described and an experimental validation is carried out.•The good agreement between the prediction and the experimental data is presented.•Then the model is used to optimize heat source temperatures to produce different levels of refrigerating capacities.</description><subject>Absorption chiller</subject><subject>Dynamic model</subject><subject>Experimental validation</subject><subject>Mechanics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Simulation</subject><subject>Thermics</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkMFq3DAQhk1podsk76BDLz3Y0diyJUMu202TDSzsJSVHIcujrLZay0hmSY59kz5LnyxyNgR662mGYb6fmS_LvgItgEJzuS_UOLpph-GgHA6PRUmhLigvaMM_ZAsQvMrrhjYfU1_Vbc4qgM_Zlxj3lEIpOFtkv6-fB3Wwmhx8j84Oj0QNPcGnEYM94DApR47K2V5N1g8EHc7DSLwhilT0759fD2Rjv4fLdbklMeEOCRqDeiKqiz6Mr5jeWecwEOMDid6pQOa7rX4NPc8-GeUiXrzVs-znzY_71TrfbG_vVstNrhmtp7xmDHqhW-i6jva6LUtAUYtWAKe16kTXUlNBw4WoGHDWNQ2YkgEaXbMGQFVn2bdT7k45OabvVHiWXlm5Xm7kPKOQhPFSHCHtXp12dfAxBjTvAFA5q5d7-a96OauXlMukPuE3JxzTP0eLQUZtcdDY25DUyN7b_wt6AS32luI</recordid><startdate>20151105</startdate><enddate>20151105</enddate><creator>Marc, Olivier</creator><creator>Sinama, Frantz</creator><creator>Praene, Jean-Philippe</creator><creator>Lucas, Franck</creator><creator>Castaing-Lasvignottes, Jean</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5041-7045</orcidid><orcidid>https://orcid.org/0000-0003-3825-8878</orcidid><orcidid>https://orcid.org/0000-0001-7706-3534</orcidid><orcidid>https://orcid.org/0000-0002-5125-628X</orcidid></search><sort><creationdate>20151105</creationdate><title>Dynamic modeling and experimental validation elements of a 30 kW LiBr/H2O single effect absorption chiller for solar application</title><author>Marc, Olivier ; Sinama, Frantz ; Praene, Jean-Philippe ; Lucas, Franck ; Castaing-Lasvignottes, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5441d8c91bbb0dc9221e858981705ab8b90f31678834174b661f241efc54611a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption chiller</topic><topic>Dynamic model</topic><topic>Experimental validation</topic><topic>Mechanics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Simulation</topic><topic>Thermics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marc, Olivier</creatorcontrib><creatorcontrib>Sinama, Frantz</creatorcontrib><creatorcontrib>Praene, Jean-Philippe</creatorcontrib><creatorcontrib>Lucas, Franck</creatorcontrib><creatorcontrib>Castaing-Lasvignottes, Jean</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marc, Olivier</au><au>Sinama, Frantz</au><au>Praene, Jean-Philippe</au><au>Lucas, Franck</au><au>Castaing-Lasvignottes, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic modeling and experimental validation elements of a 30 kW LiBr/H2O single effect absorption chiller for solar application</atitle><jtitle>Applied thermal engineering</jtitle><date>2015-11-05</date><risdate>2015</risdate><volume>90</volume><issue>C</issue><spage>980</spage><epage>993</epage><pages>980-993</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>This paper presents a dynamic modeling of a single-effect absorption chiller working with LiBr–H2O solution used in a solar cooling installation operating without any backup systems (hot or cold). In this case, the absorption machine is powered only by a solar collector field. Given the highly variable nature of solar radiation and the building loads, the range of the three source temperatures of the chiller can vary widely since there is no backup system. These fluctuating source temperatures mean that the chiller does not operate in steady state phase during the day. The dynamic modeling of the absorption chiller is therefore very important to predict its performance, taking into account both the transient and steady state phases. The numerical model presented in this paper is based on the mass and energy balances of each component, equations of state and equations of heat transfers. In the first part, this article presents the dynamic modeling of a LiBr/H2O absorption chiller. Then, experimental validation elements are proposed to validate pressures and temperatures of the chiller. Finally, a method is presented to optimize the thermal COP according to different levels of refrigerating capacities. •A dynamic absorption chiller model has been developed in this paper.•The model is described and an experimental validation is carried out.•The good agreement between the prediction and the experimental data is presented.•Then the model is used to optimize heat source temperatures to produce different levels of refrigerating capacities.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2015.07.067</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5041-7045</orcidid><orcidid>https://orcid.org/0000-0003-3825-8878</orcidid><orcidid>https://orcid.org/0000-0001-7706-3534</orcidid><orcidid>https://orcid.org/0000-0002-5125-628X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2015-11, Vol.90 (C), p.980-993
issn 1359-4311
1873-5606
language eng
recordid cdi_hal_primary_oai_HAL_hal_01187728v1
source Elsevier
subjects Absorption chiller
Dynamic model
Experimental validation
Mechanics
Optimization
Physics
Simulation
Thermics
title Dynamic modeling and experimental validation elements of a 30 kW LiBr/H2O single effect absorption chiller for solar application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20modeling%20and%20experimental%20validation%20elements%20of%20a%2030%C2%A0kW%20LiBr/H2O%20single%20effect%20absorption%20chiller%20for%20solar%20application&rft.jtitle=Applied%20thermal%20engineering&rft.au=Marc,%20Olivier&rft.date=2015-11-05&rft.volume=90&rft.issue=C&rft.spage=980&rft.epage=993&rft.pages=980-993&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2015.07.067&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01187728v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-5441d8c91bbb0dc9221e858981705ab8b90f31678834174b661f241efc54611a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true