Loading…
Turning peptides in comb silicone polymers
We have recently reported on a new class of silicone–peptide‵ biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbon...
Saved in:
Published in: | Journal of peptide science 2015-03, Vol.21 (3), p.243-247 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5587-c44010d214ac34f0cfdb8562caa094298a91c31338f98ad5e047c0e5f6af78f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5587-c44010d214ac34f0cfdb8562caa094298a91c31338f98ad5e047c0e5f6af78f3 |
container_end_page | 247 |
container_issue | 3 |
container_start_page | 243 |
container_title | Journal of peptide science |
container_volume | 21 |
creator | Jebors, Said Pinese, Coline Nottelet, Benjamin Parra, Karine Amblard, Muriel Mehdi, Ahmad Martinez, Jean Subra, Gilles |
description | We have recently reported on a new class of silicone–peptide‵ biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone‐bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side‐chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
We have recently reported on a new class of silicone–peptide biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone‐bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side‐chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating. |
doi_str_mv | 10.1002/psc.2757 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01206461v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664191071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5587-c44010d214ac34f0cfdb8562caa094298a91c31338f98ad5e047c0e5f6af78f3</originalsourceid><addsrcrecordid>eNqNkdtqGzEURUVIycUt5AvCQF6awrhHd82jaxK7YJy0NeRRyBpNomRuGdlp_ffRYNeFQiBPOkiLhc7eCJ1hGGIA8rUNdkgklwfoBEOWpZgqedjPkqdEYHmMTkN4BIhvXByhY8KFUpKpE_Rlse5qX98nrWtXPnch8XVim2qZBF9629QuaZtyU7kufEQfClMG92l3DtDi-moxnqazm8n38WiWWs6VTC1jgCEnmBlLWQG2yJeKC2KNgYyRTJkMW4opVUWcc-6ASQuOF8IUUhV0gC632gdT6rbzlek2ujFeT0cz3d8BJiCYwC84sp-3bNs1z2sXVrrywbqyNLVr1kFjISmNuSjxDlQwnMXEeuvFf-hjE1OKO0eKKwFKEfpPaLsmhM4V-89i0H0rOrai-1Yier4TrpeVy_fg3xoikG6B3750mzdF-vbXeCfc8T6s3J89b7onHTeWXN_NJ_rnZD6f_fgGekpfAbx2oXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658608823</pqid></control><display><type>article</type><title>Turning peptides in comb silicone polymers</title><source>Wiley</source><creator>Jebors, Said ; Pinese, Coline ; Nottelet, Benjamin ; Parra, Karine ; Amblard, Muriel ; Mehdi, Ahmad ; Martinez, Jean ; Subra, Gilles</creator><creatorcontrib>Jebors, Said ; Pinese, Coline ; Nottelet, Benjamin ; Parra, Karine ; Amblard, Muriel ; Mehdi, Ahmad ; Martinez, Jean ; Subra, Gilles</creatorcontrib><description>We have recently reported on a new class of silicone–peptide‵ biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone‐bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side‐chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
We have recently reported on a new class of silicone–peptide biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone‐bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side‐chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating.</description><identifier>ISSN: 1075-2617</identifier><identifier>EISSN: 1099-1387</identifier><identifier>DOI: 10.1002/psc.2757</identifier><identifier>PMID: 25688748</identifier><identifier>CODEN: JPSIEI</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amino Acids ; Amino Acids - chemistry ; Animals ; Anti-Bacterial Agents ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - pharmacology ; Cell Line ; Cell Survival ; Cell Survival - drug effects ; Chemical Sciences ; comb-polymers ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - growth & development ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Hydrogen-Ion Concentration ; hydroxysilyl peptides ; Mice ; Microbial Viability ; Microbial Viability - drug effects ; peptide materials ; Peptides ; Peptides - chemical synthesis ; Peptides - pharmacology ; Polymerization ; Polymers ; Polymers - chemical synthesis ; Polymers - pharmacology ; polysiloxane ; silicone ; Silicones ; Silicones - chemistry ; Siloxanes ; Siloxanes - chemistry ; Solid-Phase Synthesis Techniques ; Solid-Phase Synthesis Techniques - methods ; Temperature ; Water ; Water - chemistry</subject><ispartof>Journal of peptide science, 2015-03, Vol.21 (3), p.243-247</ispartof><rights>Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5587-c44010d214ac34f0cfdb8562caa094298a91c31338f98ad5e047c0e5f6af78f3</citedby><cites>FETCH-LOGICAL-c5587-c44010d214ac34f0cfdb8562caa094298a91c31338f98ad5e047c0e5f6af78f3</cites><orcidid>0000-0002-7830-2012 ; 0000-0003-4857-4049 ; 0000-0002-9267-4621 ; 0000-0001-8922-1755 ; 0000-0003-4837-4231 ; 0000-0002-8577-9273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25688748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01206461$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jebors, Said</creatorcontrib><creatorcontrib>Pinese, Coline</creatorcontrib><creatorcontrib>Nottelet, Benjamin</creatorcontrib><creatorcontrib>Parra, Karine</creatorcontrib><creatorcontrib>Amblard, Muriel</creatorcontrib><creatorcontrib>Mehdi, Ahmad</creatorcontrib><creatorcontrib>Martinez, Jean</creatorcontrib><creatorcontrib>Subra, Gilles</creatorcontrib><title>Turning peptides in comb silicone polymers</title><title>Journal of peptide science</title><addtitle>J. Pept. Sci</addtitle><description>We have recently reported on a new class of silicone–peptide‵ biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone‐bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side‐chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
We have recently reported on a new class of silicone–peptide biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone‐bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side‐chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating.</description><subject>Amino Acids</subject><subject>Amino Acids - chemistry</subject><subject>Animals</subject><subject>Anti-Bacterial Agents</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cell Survival - drug effects</subject><subject>Chemical Sciences</subject><subject>comb-polymers</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - growth & development</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Hydrogen-Ion Concentration</subject><subject>hydroxysilyl peptides</subject><subject>Mice</subject><subject>Microbial Viability</subject><subject>Microbial Viability - drug effects</subject><subject>peptide materials</subject><subject>Peptides</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - pharmacology</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - pharmacology</subject><subject>polysiloxane</subject><subject>silicone</subject><subject>Silicones</subject><subject>Silicones - chemistry</subject><subject>Siloxanes</subject><subject>Siloxanes - chemistry</subject><subject>Solid-Phase Synthesis Techniques</subject><subject>Solid-Phase Synthesis Techniques - methods</subject><subject>Temperature</subject><subject>Water</subject><subject>Water - chemistry</subject><issn>1075-2617</issn><issn>1099-1387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkdtqGzEURUVIycUt5AvCQF6awrhHd82jaxK7YJy0NeRRyBpNomRuGdlp_ffRYNeFQiBPOkiLhc7eCJ1hGGIA8rUNdkgklwfoBEOWpZgqedjPkqdEYHmMTkN4BIhvXByhY8KFUpKpE_Rlse5qX98nrWtXPnch8XVim2qZBF9629QuaZtyU7kufEQfClMG92l3DtDi-moxnqazm8n38WiWWs6VTC1jgCEnmBlLWQG2yJeKC2KNgYyRTJkMW4opVUWcc-6ASQuOF8IUUhV0gC632gdT6rbzlek2ujFeT0cz3d8BJiCYwC84sp-3bNs1z2sXVrrywbqyNLVr1kFjISmNuSjxDlQwnMXEeuvFf-hjE1OKO0eKKwFKEfpPaLsmhM4V-89i0H0rOrai-1Yier4TrpeVy_fg3xoikG6B3750mzdF-vbXeCfc8T6s3J89b7onHTeWXN_NJ_rnZD6f_fgGekpfAbx2oXM</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Jebors, Said</creator><creator>Pinese, Coline</creator><creator>Nottelet, Benjamin</creator><creator>Parra, Karine</creator><creator>Amblard, Muriel</creator><creator>Mehdi, Ahmad</creator><creator>Martinez, Jean</creator><creator>Subra, Gilles</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7830-2012</orcidid><orcidid>https://orcid.org/0000-0003-4857-4049</orcidid><orcidid>https://orcid.org/0000-0002-9267-4621</orcidid><orcidid>https://orcid.org/0000-0001-8922-1755</orcidid><orcidid>https://orcid.org/0000-0003-4837-4231</orcidid><orcidid>https://orcid.org/0000-0002-8577-9273</orcidid></search><sort><creationdate>201503</creationdate><title>Turning peptides in comb silicone polymers</title><author>Jebors, Said ; Pinese, Coline ; Nottelet, Benjamin ; Parra, Karine ; Amblard, Muriel ; Mehdi, Ahmad ; Martinez, Jean ; Subra, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5587-c44010d214ac34f0cfdb8562caa094298a91c31338f98ad5e047c0e5f6af78f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acids</topic><topic>Amino Acids - chemistry</topic><topic>Animals</topic><topic>Anti-Bacterial Agents</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cell Survival - drug effects</topic><topic>Chemical Sciences</topic><topic>comb-polymers</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - growth & development</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Hydrogen-Ion Concentration</topic><topic>hydroxysilyl peptides</topic><topic>Mice</topic><topic>Microbial Viability</topic><topic>Microbial Viability - drug effects</topic><topic>peptide materials</topic><topic>Peptides</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - pharmacology</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - pharmacology</topic><topic>polysiloxane</topic><topic>silicone</topic><topic>Silicones</topic><topic>Silicones - chemistry</topic><topic>Siloxanes</topic><topic>Siloxanes - chemistry</topic><topic>Solid-Phase Synthesis Techniques</topic><topic>Solid-Phase Synthesis Techniques - methods</topic><topic>Temperature</topic><topic>Water</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jebors, Said</creatorcontrib><creatorcontrib>Pinese, Coline</creatorcontrib><creatorcontrib>Nottelet, Benjamin</creatorcontrib><creatorcontrib>Parra, Karine</creatorcontrib><creatorcontrib>Amblard, Muriel</creatorcontrib><creatorcontrib>Mehdi, Ahmad</creatorcontrib><creatorcontrib>Martinez, Jean</creatorcontrib><creatorcontrib>Subra, Gilles</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of peptide science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jebors, Said</au><au>Pinese, Coline</au><au>Nottelet, Benjamin</au><au>Parra, Karine</au><au>Amblard, Muriel</au><au>Mehdi, Ahmad</au><au>Martinez, Jean</au><au>Subra, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turning peptides in comb silicone polymers</atitle><jtitle>Journal of peptide science</jtitle><addtitle>J. Pept. Sci</addtitle><date>2015-03</date><risdate>2015</risdate><volume>21</volume><issue>3</issue><spage>243</spage><epage>247</epage><pages>243-247</pages><issn>1075-2617</issn><eissn>1099-1387</eissn><coden>JPSIEI</coden><abstract>We have recently reported on a new class of silicone–peptide‵ biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone‐bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side‐chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
We have recently reported on a new class of silicone–peptide biopolymers obtained by polymerization of di‐functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane‐derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone‐bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side‐chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25688748</pmid><doi>10.1002/psc.2757</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7830-2012</orcidid><orcidid>https://orcid.org/0000-0003-4857-4049</orcidid><orcidid>https://orcid.org/0000-0002-9267-4621</orcidid><orcidid>https://orcid.org/0000-0001-8922-1755</orcidid><orcidid>https://orcid.org/0000-0003-4837-4231</orcidid><orcidid>https://orcid.org/0000-0002-8577-9273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1075-2617 |
ispartof | Journal of peptide science, 2015-03, Vol.21 (3), p.243-247 |
issn | 1075-2617 1099-1387 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01206461v1 |
source | Wiley |
subjects | Amino Acids Amino Acids - chemistry Animals Anti-Bacterial Agents Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - pharmacology Cell Line Cell Survival Cell Survival - drug effects Chemical Sciences comb-polymers Escherichia coli Escherichia coli - drug effects Escherichia coli - growth & development Fibroblasts Fibroblasts - cytology Fibroblasts - drug effects Hydrogen-Ion Concentration hydroxysilyl peptides Mice Microbial Viability Microbial Viability - drug effects peptide materials Peptides Peptides - chemical synthesis Peptides - pharmacology Polymerization Polymers Polymers - chemical synthesis Polymers - pharmacology polysiloxane silicone Silicones Silicones - chemistry Siloxanes Siloxanes - chemistry Solid-Phase Synthesis Techniques Solid-Phase Synthesis Techniques - methods Temperature Water Water - chemistry |
title | Turning peptides in comb silicone polymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turning%20peptides%20in%20comb%20silicone%20polymers&rft.jtitle=Journal%20of%20peptide%20science&rft.au=Jebors,%20Said&rft.date=2015-03&rft.volume=21&rft.issue=3&rft.spage=243&rft.epage=247&rft.pages=243-247&rft.issn=1075-2617&rft.eissn=1099-1387&rft.coden=JPSIEI&rft_id=info:doi/10.1002/psc.2757&rft_dat=%3Cproquest_hal_p%3E1664191071%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5587-c44010d214ac34f0cfdb8562caa094298a91c31338f98ad5e047c0e5f6af78f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1658608823&rft_id=info:pmid/25688748&rfr_iscdi=true |