Loading…
Inhibiting Lateral Habenula Improves L-DOPA–Induced Dyskinesia
Abstract Background A systematic search of brain nuclei putatively involved in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson’s disease shed light, notably, upon the lateral habenula (LHb), which displayed an overexpression of the ∆FosB, ARC, and Zif268 immediate-early g...
Saved in:
Published in: | Biological psychiatry (1969) 2016-03, Vol.79 (5), p.345-353 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Background A systematic search of brain nuclei putatively involved in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson’s disease shed light, notably, upon the lateral habenula (LHb), which displayed an overexpression of the ∆FosB, ARC, and Zif268 immediate-early genes only in rats experiencing abnormal involuntary movements (AIMs). We thus hypothesized that LHb might play a role in LID. Methods ∆FosB immunoreactivity, 2-deoxyglucose uptake, and firing activity of LHb were studied in experimental models of Parkinson’s disease and LID. ΔFosB-expressing LHb neurons were then targeted using the Daun02-inactivation method. A total of 18 monkeys and 55 rats were used. Results LHb was found to be metabolically modified in dyskinetic monkeys and its neuronal firing frequency significantly increased in ON L-DOPA dyskinetic 6-hydroxydopamine-lesioned rats, suggesting that increased LHb neuronal activity in response to L-DOPA is related to AIM manifestation. Therefore, to mechanistically test if LHb neuronal activity might affect AIM severity, following induction of AIMs, 6-hydroxydopamine rats were injected with Daun02 in the LHb previously transfected with ß-galactosidase under control of the FosB promoter. Three days after Daun02 administration, animals were tested daily with L-DOPA to assess LID and L-DOPA–induced rotations. Inactivation of ∆FosB-expressing neurons significantly reduced AIM severity and also increased rotations. Interestingly, the dopaminergic D1 receptor was overexpressed only on the lesioned side of dyskinetic rats in LHb and co-localized with ΔFosB, suggesting a D1 receptor-mediated mechanism supporting the LHb involvement in AIMs. Conclusions This study highlights the role of LHb in LID, offering a new target to innovative treatments of LID. |
---|---|
ISSN: | 0006-3223 1873-2402 |
DOI: | 10.1016/j.biopsych.2014.08.022 |