Loading…

Porous metal oxide microspheres from ion exchange resin

This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP)....

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Special topics, 2015-07, Vol.224 (9), p.1675-1687
Main Authors: Picart, S., Parant, P., Caisso, M., Remy, E., Mokhtari, H., Jobelin, I., Bayle, J.P., Martin, C.L., Blanchart, P., Ayral, A., Delahaye, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700–800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjst/e2015-02490-y