Loading…

LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV

This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In orde...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & robotic systems 2016-12, Vol.84 (1-4), p.163-177
Main Authors: López-Estrada, Francisco Ronay, Ponsart, Jean-Christophe, Theilliol, Didier, Zhang, Youmin, Astorga-Zaragoza, Carlos-Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3
cites cdi_FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3
container_end_page 177
container_issue 1-4
container_start_page 163
container_title Journal of intelligent & robotic systems
container_volume 84
creator López-Estrada, Francisco Ronay
Ponsart, Jean-Christophe
Theilliol, Didier
Zhang, Youmin
Astorga-Zaragoza, Carlos-Manuel
description This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.
doi_str_mv 10.1007/s10846-015-0295-y
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01242653v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4280464811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3</originalsourceid><addsrcrecordid>eNp1kVtLxDAQhYMouF5-gG8BX_ShOmmTNnlc1yuseNvd15A2yVqtjSatsP_eLBURQeZhhpPvDBMOQgcETghAcRoIcJonQFgCqWDJagONCCuyBCiITTQCkZL1S76NdkJ4AQDBmRihxfR-gW-dNk1ypoLReOZV9Vq3Szxxbeddg1Wr8aMr-9DhJ9MG5_Gl6psOn9dq2bpQB2yjpvBDr7R3XZzn48Ue2rKqCWb_u--i-eXFbHKdTO-ubibjaVJlPOuS3GphdVEJWxWi1IQaxrkyOcSRWRKlNNdcqZJBqSnhEIuVQihBq8KCzXbR8bD3WTXy3ddvyq-kU7W8Hk_lWgOS0jRn2SeJ7NHAvnv30ZvQybc6VKZpVGtcHyThhRCcQ0ojevgHfXG9b-NPIkVFTtNC5JEiA1V5F4I39ucCAnKdihxSiUcwuU5FrqInHTwhsu3S-F-b_zV9AYN3jfE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849642796</pqid></control><display><type>article</type><title>LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV</title><source>Springer Link</source><creator>López-Estrada, Francisco Ronay ; Ponsart, Jean-Christophe ; Theilliol, Didier ; Zhang, Youmin ; Astorga-Zaragoza, Carlos-Manuel</creator><creatorcontrib>López-Estrada, Francisco Ronay ; Ponsart, Jean-Christophe ; Theilliol, Didier ; Zhang, Youmin ; Astorga-Zaragoza, Carlos-Manuel</creatorcontrib><description>This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-015-0295-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Automatic ; Control ; Controllers ; Design engineering ; Disturbances ; Electrical Engineering ; Engineering ; Engineering Sciences ; Fault detection ; Mechanical Engineering ; Mechatronics ; Robotics ; Robust control ; Robustness ; Rotorcraft ; Sensors</subject><ispartof>Journal of intelligent &amp; robotic systems, 2016-12, Vol.84 (1-4), p.163-177</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Journal of Intelligent &amp; Robotic Systems is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3</citedby><cites>FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3</cites><orcidid>0000-0003-1610-2418 ; 0000-0002-1942-0094 ; 0000-0002-8724-335X ; 0000-0002-4678-9006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01242653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Estrada, Francisco Ronay</creatorcontrib><creatorcontrib>Ponsart, Jean-Christophe</creatorcontrib><creatorcontrib>Theilliol, Didier</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Astorga-Zaragoza, Carlos-Manuel</creatorcontrib><title>LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.</description><subject>Artificial Intelligence</subject><subject>Automatic</subject><subject>Control</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Disturbances</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Fault detection</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Rotorcraft</subject><subject>Sensors</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kVtLxDAQhYMouF5-gG8BX_ShOmmTNnlc1yuseNvd15A2yVqtjSatsP_eLBURQeZhhpPvDBMOQgcETghAcRoIcJonQFgCqWDJagONCCuyBCiITTQCkZL1S76NdkJ4AQDBmRihxfR-gW-dNk1ypoLReOZV9Vq3Szxxbeddg1Wr8aMr-9DhJ9MG5_Gl6psOn9dq2bpQB2yjpvBDr7R3XZzn48Ue2rKqCWb_u--i-eXFbHKdTO-ubibjaVJlPOuS3GphdVEJWxWi1IQaxrkyOcSRWRKlNNdcqZJBqSnhEIuVQihBq8KCzXbR8bD3WTXy3ddvyq-kU7W8Hk_lWgOS0jRn2SeJ7NHAvnv30ZvQybc6VKZpVGtcHyThhRCcQ0ojevgHfXG9b-NPIkVFTtNC5JEiA1V5F4I39ucCAnKdihxSiUcwuU5FrqInHTwhsu3S-F-b_zV9AYN3jfE</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>López-Estrada, Francisco Ronay</creator><creator>Ponsart, Jean-Christophe</creator><creator>Theilliol, Didier</creator><creator>Zhang, Youmin</creator><creator>Astorga-Zaragoza, Carlos-Manuel</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1610-2418</orcidid><orcidid>https://orcid.org/0000-0002-1942-0094</orcidid><orcidid>https://orcid.org/0000-0002-8724-335X</orcidid><orcidid>https://orcid.org/0000-0002-4678-9006</orcidid></search><sort><creationdate>20161201</creationdate><title>LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV</title><author>López-Estrada, Francisco Ronay ; Ponsart, Jean-Christophe ; Theilliol, Didier ; Zhang, Youmin ; Astorga-Zaragoza, Carlos-Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Intelligence</topic><topic>Automatic</topic><topic>Control</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Disturbances</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Fault detection</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Rotorcraft</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Estrada, Francisco Ronay</creatorcontrib><creatorcontrib>Ponsart, Jean-Christophe</creatorcontrib><creatorcontrib>Theilliol, Didier</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Astorga-Zaragoza, Carlos-Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Estrada, Francisco Ronay</au><au>Ponsart, Jean-Christophe</au><au>Theilliol, Didier</au><au>Zhang, Youmin</au><au>Astorga-Zaragoza, Carlos-Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>84</volume><issue>1-4</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-015-0295-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1610-2418</orcidid><orcidid>https://orcid.org/0000-0002-1942-0094</orcidid><orcidid>https://orcid.org/0000-0002-8724-335X</orcidid><orcidid>https://orcid.org/0000-0002-4678-9006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2016-12, Vol.84 (1-4), p.163-177
issn 0921-0296
1573-0409
language eng
recordid cdi_hal_primary_oai_HAL_hal_01242653v1
source Springer Link
subjects Artificial Intelligence
Automatic
Control
Controllers
Design engineering
Disturbances
Electrical Engineering
Engineering
Engineering Sciences
Fault detection
Mechanical Engineering
Mechatronics
Robotics
Robust control
Robustness
Rotorcraft
Sensors
title LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPV%20Model-Based%20Tracking%20Control%20and%20Robust%20Sensor%20Fault%20Diagnosis%20for%20a%20Quadrotor%20UAV&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=L%C3%B3pez-Estrada,%20Francisco%20Ronay&rft.date=2016-12-01&rft.volume=84&rft.issue=1-4&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-015-0295-y&rft_dat=%3Cproquest_hal_p%3E4280464811%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1849642796&rft_id=info:pmid/&rfr_iscdi=true