Loading…
LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV
This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In orde...
Saved in:
Published in: | Journal of intelligent & robotic systems 2016-12, Vol.84 (1-4), p.163-177 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3 |
container_end_page | 177 |
container_issue | 1-4 |
container_start_page | 163 |
container_title | Journal of intelligent & robotic systems |
container_volume | 84 |
creator | López-Estrada, Francisco Ronay Ponsart, Jean-Christophe Theilliol, Didier Zhang, Youmin Astorga-Zaragoza, Carlos-Manuel |
description | This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system. |
doi_str_mv | 10.1007/s10846-015-0295-y |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01242653v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4280464811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3</originalsourceid><addsrcrecordid>eNp1kVtLxDAQhYMouF5-gG8BX_ShOmmTNnlc1yuseNvd15A2yVqtjSatsP_eLBURQeZhhpPvDBMOQgcETghAcRoIcJonQFgCqWDJagONCCuyBCiITTQCkZL1S76NdkJ4AQDBmRihxfR-gW-dNk1ypoLReOZV9Vq3Szxxbeddg1Wr8aMr-9DhJ9MG5_Gl6psOn9dq2bpQB2yjpvBDr7R3XZzn48Ue2rKqCWb_u--i-eXFbHKdTO-ubibjaVJlPOuS3GphdVEJWxWi1IQaxrkyOcSRWRKlNNdcqZJBqSnhEIuVQihBq8KCzXbR8bD3WTXy3ddvyq-kU7W8Hk_lWgOS0jRn2SeJ7NHAvnv30ZvQybc6VKZpVGtcHyThhRCcQ0ojevgHfXG9b-NPIkVFTtNC5JEiA1V5F4I39ucCAnKdihxSiUcwuU5FrqInHTwhsu3S-F-b_zV9AYN3jfE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849642796</pqid></control><display><type>article</type><title>LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV</title><source>Springer Link</source><creator>López-Estrada, Francisco Ronay ; Ponsart, Jean-Christophe ; Theilliol, Didier ; Zhang, Youmin ; Astorga-Zaragoza, Carlos-Manuel</creator><creatorcontrib>López-Estrada, Francisco Ronay ; Ponsart, Jean-Christophe ; Theilliol, Didier ; Zhang, Youmin ; Astorga-Zaragoza, Carlos-Manuel</creatorcontrib><description>This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-015-0295-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Automatic ; Control ; Controllers ; Design engineering ; Disturbances ; Electrical Engineering ; Engineering ; Engineering Sciences ; Fault detection ; Mechanical Engineering ; Mechatronics ; Robotics ; Robust control ; Robustness ; Rotorcraft ; Sensors</subject><ispartof>Journal of intelligent & robotic systems, 2016-12, Vol.84 (1-4), p.163-177</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Journal of Intelligent & Robotic Systems is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3</citedby><cites>FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3</cites><orcidid>0000-0003-1610-2418 ; 0000-0002-1942-0094 ; 0000-0002-8724-335X ; 0000-0002-4678-9006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01242653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Estrada, Francisco Ronay</creatorcontrib><creatorcontrib>Ponsart, Jean-Christophe</creatorcontrib><creatorcontrib>Theilliol, Didier</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Astorga-Zaragoza, Carlos-Manuel</creatorcontrib><title>LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.</description><subject>Artificial Intelligence</subject><subject>Automatic</subject><subject>Control</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Disturbances</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Fault detection</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Rotorcraft</subject><subject>Sensors</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kVtLxDAQhYMouF5-gG8BX_ShOmmTNnlc1yuseNvd15A2yVqtjSatsP_eLBURQeZhhpPvDBMOQgcETghAcRoIcJonQFgCqWDJagONCCuyBCiITTQCkZL1S76NdkJ4AQDBmRihxfR-gW-dNk1ypoLReOZV9Vq3Szxxbeddg1Wr8aMr-9DhJ9MG5_Gl6psOn9dq2bpQB2yjpvBDr7R3XZzn48Ue2rKqCWb_u--i-eXFbHKdTO-ubibjaVJlPOuS3GphdVEJWxWi1IQaxrkyOcSRWRKlNNdcqZJBqSnhEIuVQihBq8KCzXbR8bD3WTXy3ddvyq-kU7W8Hk_lWgOS0jRn2SeJ7NHAvnv30ZvQybc6VKZpVGtcHyThhRCcQ0ojevgHfXG9b-NPIkVFTtNC5JEiA1V5F4I39ucCAnKdihxSiUcwuU5FrqInHTwhsu3S-F-b_zV9AYN3jfE</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>López-Estrada, Francisco Ronay</creator><creator>Ponsart, Jean-Christophe</creator><creator>Theilliol, Didier</creator><creator>Zhang, Youmin</creator><creator>Astorga-Zaragoza, Carlos-Manuel</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1610-2418</orcidid><orcidid>https://orcid.org/0000-0002-1942-0094</orcidid><orcidid>https://orcid.org/0000-0002-8724-335X</orcidid><orcidid>https://orcid.org/0000-0002-4678-9006</orcidid></search><sort><creationdate>20161201</creationdate><title>LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV</title><author>López-Estrada, Francisco Ronay ; Ponsart, Jean-Christophe ; Theilliol, Didier ; Zhang, Youmin ; Astorga-Zaragoza, Carlos-Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Intelligence</topic><topic>Automatic</topic><topic>Control</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Disturbances</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Fault detection</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Rotorcraft</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Estrada, Francisco Ronay</creatorcontrib><creatorcontrib>Ponsart, Jean-Christophe</creatorcontrib><creatorcontrib>Theilliol, Didier</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Astorga-Zaragoza, Carlos-Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Estrada, Francisco Ronay</au><au>Ponsart, Jean-Christophe</au><au>Theilliol, Didier</au><au>Zhang, Youmin</au><au>Astorga-Zaragoza, Carlos-Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>84</volume><issue>1-4</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-015-0295-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1610-2418</orcidid><orcidid>https://orcid.org/0000-0002-1942-0094</orcidid><orcidid>https://orcid.org/0000-0002-8724-335X</orcidid><orcidid>https://orcid.org/0000-0002-4678-9006</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2016-12, Vol.84 (1-4), p.163-177 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01242653v1 |
source | Springer Link |
subjects | Artificial Intelligence Automatic Control Controllers Design engineering Disturbances Electrical Engineering Engineering Engineering Sciences Fault detection Mechanical Engineering Mechatronics Robotics Robust control Robustness Rotorcraft Sensors |
title | LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPV%20Model-Based%20Tracking%20Control%20and%20Robust%20Sensor%20Fault%20Diagnosis%20for%20a%20Quadrotor%20UAV&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=L%C3%B3pez-Estrada,%20Francisco%20Ronay&rft.date=2016-12-01&rft.volume=84&rft.issue=1-4&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-015-0295-y&rft_dat=%3Cproquest_hal_p%3E4280464811%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-6fd9fd7c9fc79bd14e588ae60d145f19bd26d8aab50bd41808085b99a94c7f0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1849642796&rft_id=info:pmid/&rfr_iscdi=true |